Advertisement

Neuroprotection: A Realistic Goal for Aged Brain?

  • Laura Calzà
  • Luciana Giardino
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 541)

Abstract

Neuron survival during adult life is the end-product of a delicate balance between intrinsic properties of neurons and environmental factors. Intrinsic properties of a neuron derive from genetic background, but also from all stimuli that affect neurons through the life, from prenatal development till aging. In fact, being most of neurons perennial cells, this means that a neuron in an eighty-year old man is eighty year old. According to this, it accumulates age-related molecular alteration that are common in all cell types, such as slowing down of many metabolic processes, protein and membrane turnover, etc., to possible vascular pathologies compromising energy supply, to selective vulnerability of specific classes to unknown agents, that could include environmental pollutants, diet-derived factors, etc.1 Environmental factors also include systemic signals which can invade the central nervous system, such as hormones, cytokines, other molecules, and cells that can cross the blood-brain-barrier under normal conditions and during pathological events, and local signals acting in the chemical milieu surrounding neurons. Moreover, structure and function of old brain are the result of a balance between rather selective deficits and compensatory attempts of neural networks, which are developed over a long period of time. Thus, observation of old, normal or pathological brains, is not adequate for understanding biological events that can lead to neurodegeneration and, thus, to identify protective strategies.

Keywords

Nitric Oxide Nerve Growth Factor Basal Forebrain Vestibular Nucleus Realistic Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.U. Dani, A. Hori and G.F. Walte, Principles of neural aging (Elsevier, Amsterdam, 1997).Google Scholar
  2. 2.
    D.S. Auld, T.J. Kornecook, S. Bastianetto and R. Quirion, Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies, Prog. Neurobiol. 68(3), 209–245 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    C.E. Clarke and M. Guttman, Dopamine agonist monotherapy in Parkinson’s disease, Lancet 360(9347), 1767–1769 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    S.C. Li and S. Sikstrom, Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation, Neurosci. Biobehav. Rev. 26(7):795–808 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    S.B. Dunnett and H.C. Fibiger, Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer’s dementia, Prog. Brain Res. 98, 413–420 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    A.C. Cuello, D. Maysinger and L. Garofalo, Trophic factor effects on cholinergic innervation in the cerebral cortex of the adult rat brain, Mol. Neurobiol. 6, 451–461 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    P.A. Lapchak, Nerve growth factor pharmacology: application to the treatment of cholinergic neurodegeneration in Alzheimer’s disease, Exp. Neurol. 124, 16–20 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Barbacid, The Trk family of neurotrophin receptors, J. Neurobiol. 25, 1386–1403 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    Z. Kokaia, G. Andsberg, A. Martinez-Serrano and O. Lindvall, Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons, Neuroscience 84, 1113–1125 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    D.A. Peterson, H.A. Dickinson-Anson, J.T. Leppert, K.F. Lee and F.H. Gage, Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75, J. Comp. Neurol. 404, 1–20 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Sobreviela, S. Jaffar and E.J. Mufson, Tyrosine kinase A, galanin and nitric oxide synthase within basal forebrain neurons in the rat, Neuroscience 87, 447–461 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Giardino, A. Giuliani and L. Calzà, Exogenous administration of L-arginine protects cholinergic neurons from colchicine neurotoxicity, NeuroReport 11, 1769–1772 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    R.J. Rylett and L.R. Williams, Role of neurotrophins in cholinergic-neurone function in the adult and aged CNS, Trends Neurosci. 17, 486–490 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    W. Fischer, A. Bjorklund, K. Chen and F.H. Gage, NGF improves spatial memory in aged rodents as a function of age, J. Neuroscience 11, 1889–1906 (1991).Google Scholar
  15. 15.
    A.L. Markowska, V.E. Koliatsos, S.J. Breckler, D.L. Price and D.S. Olton, Human nerve growth factor improves spatial memory in aged but not in young rats, J. Neuroscience 14, 4815–4824 (1994).Google Scholar
  16. 16.
    R.J. Rylett, S. Goddard, B.M. Schmidt and L.R. Williams, Acetylcholine synthesis and release following continuous intracerebral administration of NGF in adult and aged Fischer-344 rats, J. Neuroscience 13, 3956–3963 (1993).Google Scholar
  17. 17.
    B.A. Urschel and C.E. Hulsebosch, Distribution and relative density of p75 nerve growth factor receptors in the rat brain as a function of age and treatment with antibodies to nerve growth factor, Brain Res. 591, 223–238 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    C.G. Gottfries, Neurochemical aspects on aging and diseases with cognitive impairment, J. Neurosci. Res. 27, 541–547 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Schliebs, S. Rossner and V. Bigl, Immunolesion by 192IgG-saporin of rat basal forebrain cholinergic system: a useful tool to produce cortical cholinergic dysfunction, Prog. Brain Res. 109, 253–264 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    K.A. Jellinger and C. Banche, Neuropathology of Alzheimer’s disease: a critical update, J. Neural Transm. Suppl. 54, 77–95 (1998).PubMedGoogle Scholar
  21. 21.
    J.D. Cooper and M.V. Sofroniew, Increased vulnerability of septal cholinergic neurons to partial loss of target neurons in aged rats, Neuroscience 75, 29–35 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    J.C. de la Torre and G.B. Stefano, Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide, Brain Res. Rev. 34, 119–136 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Stemmelin, C. Lazarus, S. Cassel, C. Kelche and J.-C. Cassel, Immunohistochemical and neurochemical correlates of learning deficits in aged rats, Neuroscience 96, 275–289 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    M.G. Baxter, K.M. Frick, D.L. Price, S.J. Breckler, A.L. Markowska and L.K. Gorman, Presynaptic markers of cholinergic function in the rat brain: relationship with age and cognitive status, Neuroscience 89, 771–780 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    Gozes, A. Bardea, A. Reshef, R. Zamostiano, S. Zhukovsky, S. Rubinraut, M. Fridkin and D.E. Brenneman, Neuroprotective strategy for Alzheimer disease: Intranasal administration of a fatty neuropeptide, Proc. Natl. Acad. Sci. USA 93, 427–432 (1996).PubMedCrossRefGoogle Scholar
  26. 26.
    N. Takei, E. Torres, A. Yuhara, H. Jongsma, C. Otto, L. Korhonen, Y. Abiru, Y. Skoglosa, G., G. Schutz, H. Hatanaka, M.V. Sofroniew and D. Lindholm, Pituitary adenylate cyclase-activating polypeptide promotes the survival of basal forebrain cholinergic neurons in vitro and in vivo: comparison with effects of nerve growth factor, Eur. J. Neuroscience 12, 2273–2280 (2000).Google Scholar
  27. 27.
    E.J. Mufson, J.S. Kroin, T.J. Sendera and T. Sobreviela, Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseaes, Prog. Neurobiol. 57, 451–484 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    M.K. Panni, J. Atkinson and M.V. Sofroniew, Leukaemia inhibitory factor prevents loss of p75-nerve growth factor receptor immunoreactivity in medial septal neurons following fimbria-fomix lesions, Neuroscience 89, 1113–1121 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    W. Hartig, A. Bauer, K. Brauer, J. Grosche, T. Hortobagyi, B. Penke, R. Schliebs, T. Harkany, Functional recovery of cholinergic basal forebrain neurons under disease conditions: old problems, new solutions?, Rev. Neurosci. 13(2):95–165 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    H.L. Weiner and D.J. Selkoe, Inflammation and therapeutic vaccination in CNS diseases, Nature 420(6917), 879–884 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    J.C. de la Torre, Vascular basis of Alzheimer’s pathogenesis, Ann. NY Acad. Sci. 977, 196–215 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    A.H. Jr Vagnucci and W.W. Li, Alzheimer’s disease and angiogenesis, Lancet 361(9357), 605–8 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    L. Calzà, L. Giardino, A. Giuliani, L. Aloe and R. Levi-Montalcini, Nerve growth factor control of neuronal expression of angiogenic and vasoactive factors, Proc. Natl. Acad. Sci. USA 98, 4160–4165 (2001).PubMedCrossRefGoogle Scholar
  34. 34.
    D.L. Felten, S.Y. Felten, K. Steece-Collier, I. Date and J.A.Clemens, Age-related decline in the dopaminergic nigrostriatal system: the oxidative hypothesis and protective strategies, Ann. Neurol. 32, S133–136 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    A.M. Murray and J.L.Waddington, Age-related changes in the regulation of behavior by D-l: D-2 dopamine receptor interactions, Neurobiol. Aging 12(5), 431–435 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    L. Giardino, Right-left asymmetry of DAI and DA2 receptor density is lost in the basal ganglia of old rats, Brain Res. 720, 235–238 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    Porras and F. Mora, Dopamine—glutamate-GABA interactions and ageing: studies in the striatum of the conscious rat, Eur. J. Neurosci. 7(11), 2183–2188 (1995).PubMedCrossRefGoogle Scholar
  38. 38.
    N. Koshikawa, Role of the nucleus accumbens and the striatum in the production of turning behaviour in intact rats, Rev. Neurosci. 5(4), 331–346 (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    Nieoullon, Dopamine and the regulation of cognition and attention, Prog. Neurobiol. 67(1), 53–83 (2002).PubMedCrossRefGoogle Scholar
  40. 40.
    R.P. Di Fabio and A. Emasithi, Aging and the mechanisms underlying head and postural control during voluntary motion, Phys. Ther. 77, 458–475 (1997).PubMedGoogle Scholar
  41. 41.
    A.B. Schultz, J.A. Ashton-Miller and N.B. Alexander, What leads to age and gender differences in balance maintenance and recovery?, Muscle Nerve Suppl. 5, S60–S64 (1997).PubMedCrossRefGoogle Scholar
  42. 42.
    L. Larsson and T. Ansved, Effects of ageing on the motor unit, Progress Neurobiol. 45, 397–458 (1995).CrossRefGoogle Scholar
  43. 43.
    R.W. Baloh, Dizziness in older people, J. Am. Geriatric. Soc. 40, 713–721 (1992).Google Scholar
  44. 44.
    A. Karsarkas, Dizziness in aging: A retrospective study of 1194 cases, Otolaryngol. Head Neck Surg. 110, 296–301 (1994).CrossRefGoogle Scholar
  45. 45.
    C.L. Darlington and P.F. Smith, Molecular mechanism of recovery from vestibular damage in mammals: recent advances, Prog. Neurobiol. 62, 313–325 (2000).PubMedCrossRefGoogle Scholar
  46. 46.
    N. Dieringer, ‘Vestibular compensation’: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates, Prog. Neurobiol. 46(2-3), 97–129 (1995).PubMedGoogle Scholar
  47. 47.
    P.F. Smith and C.L. Darlington, Pharmacology of the vestibular system, Baillieres Clin. Neurol. 3(3), 467–484 (1994).PubMedGoogle Scholar
  48. 48.
    L. Calza, L. Giardino, M. Zanni and G. Galetti, Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat, Eur. Arch. Otorhinolaryngol. 249(1), 34–39 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    C. de Waele, M. Muhlethaler and P.P. Vidal, Neurochemistry of the central vestibular pathways, Brain Res. Rev. 20(1), 24–46 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Zanni, L. Giardino, L. Toschi, G. Galetti and L. Calzà, Distribution of neurotransmitters, neuropeptides, and receptors in the vestibular nuclei complex of the rat: An immunocytochemical, in situ hybridization and quantitative receptor autoradiographic study, Brain Res. Bull. 36, 443–452 (1995).PubMedCrossRefGoogle Scholar
  51. 51.
    C. Cirelli, M. Pompeiano, P. D’A scanio, P. Arrighi and O. Pompeiano, c-fos Expression in the rat brain after unilateral labyrinthectomy and its relation to the uncompensated and compensated stages, Neuroscience 70(2), 515–46 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    P.F. Smith and I.S. Curthoys, Mechanisms of recovery following unilateral labyrinthectomy: a review, Brain Res. Rev. 14(2), 155–80 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    C. L. Darlington, H. Flohr and P.F. Smith, Molecular mechanisms of brainstem plasticity. The vestibular compensation model, Mol. Neurobiol. 5(2-4), 355–368 (1991).PubMedCrossRefGoogle Scholar
  54. 54.
    P.F. Smith and C.L. Darlington, Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation), Brain Res Rev. 16(2), 117–33 (1991).PubMedCrossRefGoogle Scholar
  55. 55.
    U. Luneburg and H. Flohr, Effects of melanocortins on vestibular compensation, Prog. Brain Res. 76, 421–429 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    D.P. Gilchrist, P.F. Smith and C.L. Darlington, ACTH(4-10) accelerates ocular motor recovery in the guinea pig following vestibular deafferentation, Neurosci. Lett. 118(1), 14–16 (1990).PubMedCrossRefGoogle Scholar
  57. 57.
    D.P. Gilchrist, CL. Darlington and P.F. Smith, A dose-response analysis of the beneficial effects of the ACTH-(4-9) analogue, Org 2766, on behavioural recovery following unilateral labyrinthectomy in guinea-pig, Br. J. Pharmacol. 111(1), 358–63 (1994).PubMedCrossRefGoogle Scholar
  58. 58.
    D.P. Gilchrist, C.L. Darlington and P.F. Smith, Evidence that short ACTH fragments enhance vestibular compensation via direct action on the ipsilateral vestibular nucleus, Neuroreport. 7(9), 1489–1492 (1996).PubMedCrossRefGoogle Scholar
  59. 59.
    P.F. Smith and C.L. Darlington, The contribution of N-methyl-D-aspartate receptors to lesion-induced plasticity in the vestibular nucleus, Prog. Neurobiol. 53(5), 517–31 (1997).PubMedCrossRefGoogle Scholar
  60. 60.
    S.A. Cameron and M.B. Dutia, Lesion-induced plasticity in rat vestibular nucleus neurones dependent on glucocorticoid receptor activation, J. Physiol. 518(Pt 1), 151–8 (1999).PubMedCrossRefGoogle Scholar
  61. 61.
    P.F. Smith, Vestibular-hippocampal interactions, Hippocampus 7(5), 465–471 (1997).PubMedCrossRefGoogle Scholar
  62. 62.
    C.A. Foster, Vestibular rehabilitation. Baillieres Clin. Neurol. 3(3), 577–592 (1994).PubMedGoogle Scholar
  63. 63.
    N.T. Shepard and S.A. Telian, Programmatic vestibular rehabilitation, Otolaryngol. Head Neck Surg. 112(1), 173–82 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    S.A. Telian and N.T. Shepard, Update on vestibular rehabilitation therapy, Otolaryngol. Clin. North Am. 29(2), 359–71 (1996).PubMedGoogle Scholar
  65. 65.
    L. Yardley, S. Beech, L. Zander, T. Evans and J. Weinman, A randomized controlled trial of exercise therapy for dizziness and vertigo in primary care, Br. J. Gen. Pract. 48(429), 1136–1140 (1998).PubMedGoogle Scholar
  66. 66.
    F.B. Horak, C. Jones-Rycewicz, F.O. Black and A. Shumway-Cook, Effects of vestibular rehabilitation on dizziness and imbalance, Otolaryngol. Head Neck Surg. 106, 175–180 (1992).PubMedGoogle Scholar
  67. 67.
    RW. Baloh, Vertigo, Lancet 352, 1841–1846 (1998).PubMedCrossRefGoogle Scholar
  68. 68.
    O. Rascol, T.C. Hain, C. Brefel, M. Benazet, M. Clanet and J.L. Montastruc, Antivertigo medications and drug-induced vertigo. A pharmacological review, Drugs 50, 777–791 (1995).PubMedCrossRefGoogle Scholar
  69. 69.
    P.F. Smith and C.L. Darlington, Can vestibular compensation be enhanced by drug treatment? A review of recent evidence, J. Vestib. Res. 4, 169–179 (1994).PubMedGoogle Scholar
  70. 70.
    B. Tighilet and M. Lacour, Pharmacological activity of the Ginkgo bilboa extract (Egb761) on equilibrium function recovery in the unilateral vestibular neurectomized cat, J. Vestib. Res. 5, 187–200 (1995).PubMedCrossRefGoogle Scholar
  71. 71.
    D.P. Gilchrist, C.L. Darlington and P.F. Smith, Effects of flunarizine on ocular motor and postural compensation following peripheral vestibular deafferentation in the guinea pig, Pharmacol. Biochem. Behav. 44(1), 99–105 (1993).PubMedCrossRefGoogle Scholar
  72. 72.
    A.J. Sansom, P.F. Smith and C.L. Darlington, Evidence that L-type calcium channels do not contribute to static vestibular function in the guinea pig vestibular nucleus, Brain Res. 630(1-2), 349–352 (1993).PubMedCrossRefGoogle Scholar
  73. 73.
    L. Giardino, M. Zanni, O. Pignataro and L. Calzà, Plasticity of gabaergic system during aging: focus on vestibular compensation and possible pharmacological intervention, Brain Res. 929, 76–86 (2002).PubMedCrossRefGoogle Scholar
  74. 74.
    J.C. Alvarez, C. Diaz, C. Suarez, J.A. Fernandez, C. Gonzalez del Rey, A. Navarro and J. Tolivia, Neuronal loss in human medial vestibular nucleus, Anat. Rec. 251, 431–438 (1998).PubMedCrossRefGoogle Scholar
  75. 75.
    R.D. Venn, Review of clinical studies with ergots in gerontology, Adv. Biochem. Psychopharmacol. 23, 363–377 (1980).PubMedGoogle Scholar
  76. 76.
    P.L. Canonico, M.A. Sortino, N. Carfagna, S. Cavallaro, F. Pamparana, K. Annoni, E. Wong and C. Post, Pharmacological basis for the clinical effects of nicergoline in dementia, Geriatria 5(Suppl VIII), 24–48 (1996).Google Scholar
  77. 77.
    R.G. Fariello, Treatment of impaired cognition with nootropic drugs: nicergoline versus the state of the art, Funct. Neurol. 12, 221–225 (1997).PubMedGoogle Scholar
  78. 78.
    M. Le Poncin-Lafitte, C. Grosdemouge, D. Duterte and J.R. Rapin, Simultaneous study of haemodynamic, metabolic and behavioural sequelae in a model of cerebral ischaemia in aged rats: effects of nicergoline, Gerontology 30, 109–119 (1984).PubMedCrossRefGoogle Scholar
  79. 79.
    U. Schindler, D.K. Rush and S. Fielding, Nootropic drugs: animal models for studying effects on cognition. Drug Dev. Res. 4, 567–576 (1984).CrossRefGoogle Scholar
  80. 80.
    B. Saletu, J. Grunberger, L. Linzmayer and P. Anderer, Brain protection of nicergoline against hypoxia: EEG brain mapping and psychometry, J. Neural Transm. Park. Dis. Dement. Sect. 2, 305–325 (1990).PubMedCrossRefGoogle Scholar
  81. 81.
    K. Shintomi, Pharmacological study of nicergoline: effects on regional cerebral blood flow, Arzneimittelforschung 41, 885–890 (1991).PubMedGoogle Scholar
  82. 82.
    N. Carfagna, A. Clemente, S. Cavanus, D. Damiani, M. Gerna, P. Salmoiraghi, B. Cattaneo and C. Post, Modulation of hippocampal Ach release by chronic nicergoline treatment in freely moving young and aged rats, Neurosci. Lett. 197, 195–198 (1995).PubMedCrossRefGoogle Scholar
  83. 83.
    N. Carfagna, S. Cavanus, D. Damiani,M. Salmoiraghi, R. Fariello and C. Post, Modulation of phosphoinositide turnover by chronic nicergoline in rat brain, Neurosci. Lett. 209, 189–192 (1996).PubMedCrossRefGoogle Scholar
  84. 84.
    A. Caputi, M. Di Luca, L. Pastorino, F. Colciaghi, N. Carfagna, E. Wong, F. Cattabeni, Nicergoline and its metabolite induce translocation of PKC isoforms in selective rat brain areas, Neurosci. Res. Commun. 23, 159–167 (1998).CrossRefGoogle Scholar
  85. 85.
    P.L. Canonico, M.A. Sortino, N. Carfagna, S. Cavallaro, F. Pamparana, K. Annoni, E. Wong and C. Post, Pharmacological basis for the clinical effects of nicergoline in dementia, Geriatria 5(Suppl.VIH), 24–48 (1996).Google Scholar
  86. 86.
    M.A. Sortino, A. Battaglia, F. Pamparana, N. Carfagna, C. Post and P.L. Canonico, Neuroprotective effects of nicergoline in immortalized neurons, Eur. J. Pharmacol. 368, 285–290 (1999).PubMedCrossRefGoogle Scholar
  87. 87.
    E. Iwata, M. Miyazaki, M. Asanuma, A. Iida and N. Ogawa, Protective effects of nicergoline against hydrogen peroxide toxicity in rat neuronal cell line, Neurosci. Lett. 251, 49–52. (1998).PubMedCrossRefGoogle Scholar
  88. 88.
    M. Tanaka, T. Yoshida, K. Okamoto and S. Hjrai, Antioxidant properties of nicergoline: inhibition of brain autooxidation and Superoxide production neurophils in rats, Neurosci. Lett. 284, 68–72 (1998).CrossRefGoogle Scholar
  89. 89.
    A. Cedazo-Minguez, L. Bonecchi, B. Winblad, C. Post, E.H. Wong, R.F. Cowburn and L. Benatti, Nicergoline stimulates protein kinase C mediated alpha-secretase processing of the amyloid precursor protein in cultured human neuroblastoma SH-SY5Y cells, Neurochem. Int. 35, 307–315 (1999).PubMedCrossRefGoogle Scholar
  90. 90.
    F. Checler, Processing of the b-amyloid precursor protein and itsa regulation in Alzheimer’s disease, J. Neurochem. 65, 1431–1444 (1995).PubMedCrossRefGoogle Scholar
  91. 91.
    M. Fioravanti, L. Flicker, Efficacy of nicergoline in dementia and other age associated forms of cognitive impairment, Cochrane Database Syst Rev. 4, CD003159 (2001).PubMedGoogle Scholar
  92. 92.
    F.J.Vajda, Neuroprotection and neurodegenerative disease, J. Clin. Neurosci. 9(1), 4–8 (2002).PubMedCrossRefGoogle Scholar
  93. 93.
    L. Giardino, A. Giuliani, A. Battaglia, N. Carfagna, L. Aloe and L. Calzà, Neuroprotection and aging of the cholinergic system: a role for the ergoline derivative nicergoline (Sermion), Neuroscience 109, 487–497 (2002).PubMedCrossRefGoogle Scholar
  94. 94.
    L. Rampello and F. Drago, Nicergoline facilitates vestibular compensation in aged male rats with unilateral labyrinthectomy, Neurosci. Lett. 267(2), 93–6 (1999).PubMedCrossRefGoogle Scholar
  95. 95.
    T.J. Marczynski, J. Artwohl and B. Marczynska, Chronic administration of flumazenil increases life span and protects rats from age-related loss of cognitive functions: a benzodiazepine/GABAergic hypothesis of brain aging, Neurobiol. Aging 15(1), 69–84 (1994).Google Scholar
  96. 96.
    T.J. Marczynski, GABAergic deafferentation hypothesis of brain aging and Alzheimer’s disease; pharmacologic profile of the benzodiazepine antagonist, flumazenil, Rev. Neurosci. 6(3), 221–258 (1995).PubMedCrossRefGoogle Scholar
  97. 97.
    J. Garthwaite and C.L. Boulton, Nitric oxide signaling in the central nervous system, Annu. Rev. Physiol. 51, 683–706 (1995).CrossRefGoogle Scholar
  98. 98.
    S.R Vincent, Nitric oxide: a radical neurotransmitter in the central nervous system, Prog. Neurobiol. 42(1), 129–160 (1994).PubMedCrossRefGoogle Scholar
  99. 99.
    C. Iadecola, Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link?, Trends Neurosci. 16, 206–214 (1993).PubMedCrossRefGoogle Scholar
  100. 100.
    S.H. Snyder, Janus faces of nitric oxide, Nature 364, 577 (1993).PubMedCrossRefGoogle Scholar
  101. 101.
    T. Dalkara, T. Yoshida, K. Irikura and M.A. Moskowitz, Dual role of nitric oxide in focal cerebral ischemia, Neuropharmacology 33(11), 1447–1452 (1994).PubMedCrossRefGoogle Scholar
  102. 102.
    L. Calzà, S. Ceccatelli and L. Giardino, NO and brain aging, Perspectives in Brain Aging Res. 1, 10–16 (1996).Google Scholar
  103. 103.
    L. Giardino, A. Giuliani and L. Calza, Exogenous administration of L-arginine protects cholinergic neurons from colchicine neurotoxicity. Neuroreport 11(8), 1769–7172 (2000).PubMedCrossRefGoogle Scholar
  104. 104.
    J. Pernow and Q.D. Wang, The role of the L-arginine/nitric oxide pathway in myocardial ischaemic and reperfusion injury, Acta Physiol. Scand. 167, 151–159 (1999).PubMedCrossRefGoogle Scholar
  105. 105.
    I. Huk, J. Nanobashvili, C. Neumayer, A. Punz, M. Mueller, K. Afkhampou, M. Mittlboeck, U. Losert, P. Polterauer, E. Roth, S. Patton and T. Malinski, L-arginine treatment alters the kinetics of nitric oxide and Superoxide release and reduces ischemia/reperfusion injury in skeletal muscle, Circulation 96, 667–675 (1997).PubMedCrossRefGoogle Scholar
  106. 106.
    E. Roth, The impact of L-arginine-nitric oxide metabolism on ischemia/reperfusion injury, Curr. Opin. Clin. Nutr. Metab. Care 1, 97–99 (1998).PubMedCrossRefGoogle Scholar
  107. 107.
    D.M. Holtzman, J. Kilbridge, D.S. Bredt, S.M. Black, Y. Li, D.O. Clary, W.C. Mobley, NOS induction by NGF in basal forebrain cholinergic neurons: evidence for regulation of brain NOS by a neurotrophin, Neurobiol. Dis. 1, 51–60 (1994).PubMedCrossRefGoogle Scholar
  108. 108.
    Y. M. Kim, H.T. Chung, S.S. Kim, J.A. Han, Y.M. Yoo, K.M. Kim, G.H. Lee, H.Y. Yun, A. Green, J. Li, R.L. Simmons and T.R. Billiar, Nitric oxide protects PC 12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling, J. Neurosci. 19, 6740–6747 (1999).PubMedGoogle Scholar
  109. 109.
    M.I. Behrens, J.Y. Koh and M.C. Muller, NADPH diaphorase-containing striatal or cortical neurons are resistant to apoptosis, Neurobiol. Dis. 3, 72–75 (1996).PubMedCrossRefGoogle Scholar
  110. 110.
    L. Giardino, M. Zanni, M. Pozza, A. Battaglia, L. Calzà and O. Pignataro, Nitric oxide synthase mRNA regulation by nicergoline treatment in the brain of old rats, Eur. Soc. Clin. Neuropharmacol. P7, 71 (1997).Google Scholar
  111. 111.
    A. Rengasamy and R.A. Johns, Regulation of nitric oxide synthase by nitric oxide, Mol. Pharmacol. 44, 124–128 (1993).PubMedGoogle Scholar
  112. 112.
    R.A. McArthur, N. Carfagna, L. Banfi, S. Cavanus, M.A. Cervini, R. Fariello and C. Post, Effects of nicergoline on age-related decrements in radial maze performance and acetylcholine levels, Brain Res. Bull. 43, 305–311 (1997).PubMedCrossRefGoogle Scholar
  113. 113.
    D.M. Holtzman, J. Kilbridge, D.S. Bredt, S.M. Black, Y. Li, D.O. Clary, L.F. Reichardt and W.C. Mobley,. NOS induction by NGF in basal forebrain cholinergic neurones: evidence for regulation of brain NOS by a neurotrophin, Neurobiol. Dis. 1, 51–60 (1994).PubMedCrossRefGoogle Scholar
  114. 114.
    T. Kitahara, N. Takeda, T. Kubo and Kiyama H. Nitric oxide in the flocculus works the inhibitory neural circuits after unilateral labyrinthectomy, Brain Res. 815, 405–409 (1999).PubMedCrossRefGoogle Scholar
  115. 115.
    T. Kitahara, N. Takeda, P.C. Emson, T. Kubo and H. Kiyama, Changes in nitric oxide synthase-like immunoreactivities in unipolar brush cells in the rat cerebellar flocculus after unilateral labyrinthectomy, Brain Res. 765, 1–6 (1997).PubMedCrossRefGoogle Scholar
  116. 116.
    G. Flugel, S. Holm and H. Flohr, Chronic inhibition of nitric oxide synthase prevents functional recovery following vestibular lesions, in: The biology of nitric oxide. 3 Physiological and clinical aspects, edited by S. Moncada, M. Feelisch, R. Busse and E.A. Higgs (Portland Press, London, 1994), pp. 381–387.Google Scholar
  117. 117.
    P.F. Smith, C. de Waele, P.P. Vidal and C.L. Darlington, Excitatory amino acid receptors in normal and abnormal vestibular function, Mol. Neurobiol. 5(2-4), 369–87 (1991).PubMedCrossRefGoogle Scholar
  118. 118.
    C.C. Chiueh, Neuroprotective properties of nitric oxide, Ann. N.Y. Acad. Sci. 890, 301–311 (1999).PubMedCrossRefGoogle Scholar
  119. 119.
    M.D. Ginsberg, Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture, Stroke 34(1), 214–223 (2003).PubMedCrossRefGoogle Scholar
  120. 120.
    M.M. Brown, Brain attack: a new approach to stroke, Clin. Med. 2(1), 60–5 (2002).PubMedGoogle Scholar
  121. 121.
    A.I. Faden, Neuroprotection and traumatic brain injury: theoretical option or realistic proposition, Curr. Opin. Neurol. 15(6), 707–712 (2002).PubMedCrossRefGoogle Scholar
  122. 122.
    Arzimanoglou, E. Hirsch, A. Nehlig, P. Castelnau, P. Gressens and A. Pereira de Vasconcelos, Epilepsy and neuroprotection: an illustrated review, Epileptic Disord. 4(3), 173–82 (2002).PubMedGoogle Scholar
  123. 123.
    Moosmann and C. Behl, Antioxidants as treatment for neurodegenerative disorders, Expert Open. invesig Drugs 11(10), 1407–1435 (2002).CrossRefGoogle Scholar
  124. 124.
    Drukarch and F.L. van Muiswinkel, Neuroprotection for Parkinson’s disease: a new approach for a new millennium, Expert Opin. Investig. Drugs 10(10), 1855–1868 (2001).PubMedCrossRefGoogle Scholar
  125. 125.
    Y. Luo, Ginkgo biloba neuroprotection: Therapeutic implications in Alzheimer’s disease, J. Alzheimers Dis. 3(4), 401–407 (2001).PubMedGoogle Scholar
  126. 126.
    M.V. Sofroniew, C.L. Howe and W.C. Mobley, Nerve growth factor signaling, neuroprotection, and neural repair, Annu. Rev. Neurosci. 24, 1217–1281 (2001)PubMedCrossRefGoogle Scholar
  127. 127.
    J.L. Seeburger and J.E. Springer, Experimental rationale for the therapeutic use of neurotrophins in amyotrophic lateral sclerosis, Exp. Neurol. 124(1), 64–72 (1993).PubMedCrossRefGoogle Scholar
  128. 128.
    B. Ferguson, M.K. Matyszak, M.M. Esiri and V.H. Perry, Axonal damage in acute multiple sclerosis lesions, Brain 120(Pt 3), 393–9 (1997).PubMedCrossRefGoogle Scholar
  129. 129.
    P. Rieckmann and K.J. Smith, Multiple sclerosis: more than inflammation and demyelination, Trends Neurosci. 24(8), 435–437 (2001).PubMedCrossRefGoogle Scholar
  130. 129.
    B. Bagert, P. Camplair and D. Bourdette, Cognitive dysfunction in multiple sclerosis: natural history, pathophysiology and management, CNS Drugs 16(7), 445–55 (2002).PubMedCrossRefGoogle Scholar
  131. 130.
    O. Ciccarelli, E. Giugni, A. Paolillo, C. Mainero, C. Gasperini, S. Bastianello and C. Pozzilli, Magnetic resonance outcome of new enhancing lesions in patients with relapsing-remitting multiple sclerosis, Eur. J. Neurol. 6(4), 455–459 (1999).PubMedCrossRefGoogle Scholar
  132. 131.
    N. Evangelou, D. Konz, M.M. Esiri, S. Smith, J. Palace and P.M. Matthews, Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis, Brain 123(Pt 9), 1845–1849 (2000).PubMedCrossRefGoogle Scholar
  133. 132.
    J.T. Povlishock, Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol. 2 (1), 1–12 (1992) PubMedGoogle Scholar
  134. 133.
    C. Bjartmar and B.D. Trapp, Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences, Curr. Opin. Neurol. 14(3), 271–278 (2001).PubMedCrossRefGoogle Scholar
  135. 134.
    J.E. Arrowsmith, H.P. Grocott, J.G. Reves and M.F. Newman, Central nervous system complications of cardiac surgery, Br. J. Anaesth. 84(3), 378–93 (2000).PubMedCrossRefGoogle Scholar
  136. 135.
    C.W. Jr Hogue, T.M. Sundt, M. Goldberg, H. Barner and V.G., Davila-Roman, Neurological complications of cardiac surgery: the need for new paradigms in prevention and treatment, Semin. Thorac. Cardiovasc. Surg. Apr; 11(2):105–15 (1999).Google Scholar
  137. 136.
    A.J. du Plessis and M.V. Johnston, The pursuit of effective neuroprotection during infant cardiac surgery, Semin. Pediatr. Neurol. 6(1), 55–63 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Laura Calzà
    • 1
  • Luciana Giardino
    • 1
  1. 1.DIMORFIPAUniversity of BolognaOzzano Emilia (Bologna)Italy

Personalised recommendations