Causes and Consequences of Disturbances of Cerebral Glucose Metabolism in Sporadic Alzheimer Disease: Therapeutic Implications

  • Siegfried Hoyer
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 541)


Nosologically, Alzheimer disease (AD) is no one single disorder. Evidence is provided that a small proportion of 5% to 10% of all Alzheimer cases is caused by missense mutations in presenilin 1 or 2 genes on chromosomes 14 and 1, or in APP gene on chromosome 21 leading to autosomal dominant familial AD with early onset. This difference of inheritance serves as the basis of the amyloid cascade hypothesis which is limited to the above mutations. The latter hypothesis explains the increased formation of the APP derivative βA4 which aggregates to amyloid (Hardy and Selkoe, 2002). However, in constrast, the great majority of all Alzheimer cases (95% to 90%) was found to be sporadic in origin and of late onset. βA4 has not been proven to be necessary for the generation and the development of this neurodegenerative disorder (Joseph et al., 2001). Thus, the amyloid cascade hypothesis may not be accepted for sporadic Alzheimer disease (SAD). Instead, susceptibility genes may contribute to the onset of the latter type of AD. Best known are allelic abnormalities on the APOE-gene on chromosome 19 responsible for both anticipated onset and increase in severity of both inherited and sporadic AD. Candidate susceptibility genes for SAD are assumed to be on chromosomes 4, 6, 10 and 20 (Bertram et al., 2000a; Pericak-Vance et al., 2000). Other candidate genes did not show any association or linkage with AD (Bertram et al., 2000b).


Alzheimer Disease Insulin Receptor Amyloid Precursor Protein Prenatal Stress Cerebral Glucose Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamo, M., Raizada, M.K., and LeRoith, D., 1989, Insulin and insulin-like growth factor receptors in the nervous system, Mol. Neurobiol. 3:71–100.Google Scholar
  2. Amri, H., Ogwuegbu, S.O., Boujard, N., Drieu, K., and Papadopoulos, V., 1996, In vivo regulation of the peripheral-type benzodiazepine receptor and glucocorticoid synthesis by the Ginkgo biloba extract EGb 761 and isolated ginkgolides, Endocrinology 137:5707–5718.Google Scholar
  3. Bak, P., Tang, C. and Wiesenfeld, K., 1988, Self-organized criticality, Phys. Rev. A38:365–374.Google Scholar
  4. Baskin, D.S. Browning, J.L., Pirozzolo, F.J., Korporaal, S., Baskin, J.A., and Appel, S.H., 1999, Brain choline acetyltransferase and mental function in Alzheimer disease, Arch. Neurol. 56:1221–1223Google Scholar
  5. Baskin, D.G., Schwartz, M.W., Sipols, A.J., D’Alessio, DA., Goldstein, B.J., and White, M.F., 1994, Insulin receptor substrate-1 (IRS-1) expression in rat brain, Endocrinology 134:1952–1955Google Scholar
  6. Benzi, G., Pastoris, I., Villa, R.F., and Giuffrida-Stella, A.M., 1984, Effect of aging on cerebral cortex energy metabolism in hypoglycemia and posthypoglycemic recovery, Neurobiol. Aging 5:205–212.Google Scholar
  7. Bertram, L., Blacker, D., Mullin, K., Keeny, D., Jones, J., Basu, S., Yhu, S. Mclnnis, M.G., Go, R.C.P., Vekrellis, K. et al., 2000a, Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q, Science 290:2302–2303.Google Scholar
  8. Bertram, L., Blacker, D., Crystal, A., Mullin, K., Kenney, D., Jones, J., Basu, S., Yhu, S., Guenette, S., Mclnnis, M., et al., 2000b, Candidate genes showing no evidence for association or linkage with Alzheimer’s disease using family-based methodologies, Exp. Gerontol. 35:1353–1361.Google Scholar
  9. Biagini, G., Pich, E.M., Carani, C, Manama, P., and Agnati, L., 1998, Postnatal maternal separation during the stress hyporesponsive period enhances the adrenocortical response to novelty in adult rats by affecting feedback regulation in the CA1 hippocampal field, Int. J. Devi. Neurosci. 16:187–197.Google Scholar
  10. Bigl, V., Arendt, T., Fischer, S., Werner, M., and Arendt, A., 1987, The cholinergic system in aging, Gerontology 33:172–180.Google Scholar
  11. Bowen, D.M., 1984, Cellular aging: selective vulnerability of cholinergic neurons in human brain, Monogr. Dev. Biol. 17:42–59.Google Scholar
  12. Braakman, J., Helenius, J., and Helenius, A., 1992, Role of ATP and disulfide bonds during protein folding in the endoplasmic reticulum, Nature 356:260–262.Google Scholar
  13. Brown, G.G. Levine, S.R., Gorell, J.M., Pettegrew, J.W., Gdowksi,, J.E., Bueri, J.A. Helpern, J.A., and Welch, K.M.A., 1989, In vivo 31P-NMR profiles of Alzheimer disease and multiple subcortical infarct dementia, Neurology 39:1423–1427.Google Scholar
  14. Bush, M.L., Niyashiro, J.S., and Ingram, V.M., 1995, Activation of a neurofilament kinase, a tau kinase and tau phosphatase by decreased ATP levels in nerve growth factor-differentiated PC12 cells, Proc. Natl. Acad. Sci. USA 92:1962–1965.Google Scholar
  15. Buttgereit, F., and Brand, M.D., 1995, A hierarchy of ATP-consuming processes in mammalian cells, Biochem. J. 312:163–167.Google Scholar
  16. Cho, K.S., Choi, J., Ha., CM., Son, Y.J., Choi, W.S., and Lee, B.K., 2002, Comparison of gene expression in old versus young rat hippocampus by cDNA array, Neuro Report 13:285–289.Google Scholar
  17. Cizza, G., Calogero, A.E., Brady, L.S., Bagdy, G., Bergamini, E., Blackmail, M.R., Chrousos, G.P., and Gold, P.W., 1994, Male Fischer 344/N rats show a progressive central impairment of the hypothalamic-pituitary-adrenal axis with advancing age, Endocrinology 134:1611–1620.Google Scholar
  18. D’Andrea, M.R., Nagele, R.G., Wang, H.-Y., Peterson, P.A., and Lee, D.H.S., 2001, Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease, Histopathology 38:120–134.Google Scholar
  19. Davidsson, P., Blennow, K., Andreasen, N., Eriksson, B., Minthon, L., and Hesse, C, 2001, Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer’s disease, Neurosci. Lett. 300:157–160.Google Scholar
  20. Demaurex, N., Furuya, W., D’Souza, S., Bonifacino, J.S., and Grinstein, S., 1998, Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN 38 and furin from the cell surface, J. Biol. Chem. 273:2044–2051.Google Scholar
  21. Devaskar, S.U., Giddings, S.J., Rajakumar, P.A., Camaghi, L.R., Menon, R.K., and Zahn, D.S., 1994, Insulin gene expression and insulin synthesis in mammalian neuronal cells, J. Biol. Chem. 269:8445–8454.Google Scholar
  22. Dorner, A.J., Wasley, L.C., and Kaufman, R.J., 1990, Protein dissociation from GRP 78 and secretion are blocked by depletion of cellular ATP levels, Proc. Natl. Acad. Sci. USA 87:7429–7432.Google Scholar
  23. Duara, R., Grady, C., Haxby, J., Sundaram, S., Cutler, N.R., Heston, L., Moore, A., Schlageter, N., Larson, S., and Rapoport, S.I., 1986; Positron emission tomography in Alzheimer’s disease, Neurology 36:879–887.Google Scholar
  24. Duelli,R.,Schröck,H., Kuschinsky,W., and Hoyer,S., 1994, Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats, Int. J. Devl. Neurosci. 12:737–743.Google Scholar
  25. Eckert, G.P., Cairns, N.J., Maras, A., Gattaz, W.F., and Muller, W.E., 2000, Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease, Dementia Geriatr. Cogn. Disord. 11:181–186.Google Scholar
  26. Erecinska, M., and Silver, I.A., 1989, ATP and brain function, J. Cereb. Blood Flow Metab. 9:2–19.Google Scholar
  27. Foster, N.L., Chase, T.N., Mansi, L., Brooks, R., Fedio, P., Patronas, N.J. and DiChiro, G., 1984, Cortical abnormalities in Alzheimer’s disease, Ann. Neurol. 16:649–654.Google Scholar
  28. Frölich, L., Blum-Degen, D., Bernstein, H.G., Engelsberger, S., Humrich, J., Laufer, S., Muschner, D., Thalheimer, A., Türk, A., Hoyer, S., et al., 1998, Insulin and insulin receptors in the brain in aging and sporadic Alzheimer’s disease, J. Neural Transm. 105:423–438.Google Scholar
  29. Fukuyama, H., Ogawa, M., Yamauchi, H., Yamaguchi, S., Kimura, J., Yonekura, Y., and Konishi, J., 1994, Altered cerebral energy metabolism in Alzheimer’s disease: a PET study, J. Nucl. Med. 35:1–6.Google Scholar
  30. Garland, P.B., and Randle, P.J., 1965, Control of pyruvate dehydrogenase in the perfused rat heart by the intracellular concentration of acetyl-coenzyme A, Biochem. J. 91:76C–77CGoogle Scholar
  31. Gasparini, L., Gouras, K.G., Wang, R., Gross, R.S., Beal, M.F., Greengard, P., and Yu, H., 2001, Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling, J. Neurosci. 21:2561–2570.Google Scholar
  32. Gerozissis,, R., Rouch, C, Lemierre, S., Nicolaidis, S., and Orosco, M., 2001, A potential role of central insulin in learning and memory related to feeding, Cell. Mol. Neurobiol. 21:389–401.Google Scholar
  33. Gething, M.-J., and Sambrook, J., 1992, Protein folding in the cell, Nature 355:33–45.Google Scholar
  34. Gething, M.-J., McCammon, K., and Sambrook, J., 1986, Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport, Cell 46:939–950.Google Scholar
  35. Gibson, G.E., Jope, R., and Blass, J.P., 1975, Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces, Biochem. J. 148:17–23.Google Scholar
  36. Gibson, G.E., Petersen, C., and Jenden, D.J., 1981, Brain acetylcholine synthesis declines with senescence, Science 213:674–676.Google Scholar
  37. Giorgino, F., Almahfouz, A., Goodyear, L.J., and Smith, R.J., 1993, Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo, J. Clin. Invest. 91: 2020–2030.Google Scholar
  38. Goldstein, B.J., 1993, Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation, Receptor 3:1–15.Google Scholar
  39. Gouras, G.K., Tsai, J., Naslund, J., Vincent, B., Edgard, M., Greenfield, J.P., Haroutunian, V., Buxbaum, J.S., Xu, H., Greengard, P., and Relkin, N.R., 2000, Intraneuronal βA42 accumulation in human brain, Am. J. Pathol. 156:15–20.Google Scholar
  40. Hammond, C., and Helenius, A., 1994, Quality control in secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus, J. Cell Biol. 126:41–52.Google Scholar
  41. Hamos, J.E. Oblas, B., Pulaski Salo, D., Welch, W.J., Bole, D.G., and Drachman, D.A. 1991, Expression of heat shock proteins in Alzheimer’s disease, Neurology 41:345–350.Google Scholar
  42. Häring, H.U., 1991, The insulin receptor: signalling mechanism and contribution to the pathogenesis of insulin resistance, Diabetologica 34:848–861.Google Scholar
  43. Hardy, J., and Selkoe, D.J., 2002, The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics, Science 297:353–356.Google Scholar
  44. Harik, S.I., and McCracken, K.A., 1986, Age-related increase in presynaptic noradrenergic markers of the rat cerebral cortex, Brain Res. 381:125–130.Google Scholar
  45. Hawkins, R.A., Mans, A.M., Davis, D.W., Hibbard, L.S., and Lu, D.M., 1983, Glucose availability to individual cerebral structures is correlated to glucose metabolism, J. Neurochem. 40:1013–1018.Google Scholar
  46. Hayashi, A., Nagaoka, M., Yamada, K., Ichitani, Y., Miake, Y., and Okado, N., 1998, Maternal stress induces synaptic loss and developmental disabilities of offspring, Int. J. Devl. Neurosci. 16:209–216.Google Scholar
  47. Held, G.A., Solina, D.H., Keane, D.T., Haag, W.J., Horn, P.M., and Grinstein, G., 1990, Experimental study of critical-mass fluctuations in an evolving sandpile. Physic. Rev. Lett. 69:1120–1123.CrossRefGoogle Scholar
  48. Henneberg, N., and Hoyer, S., 1995, Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)?, Arch. Gerontol. Geriatr. 21:63–74.Google Scholar
  49. Herholz, K., Salmon, E., Perani, D., Baron, J.-C, Holthoff, V., Frölich, L., Schönknecht, P., Ito, K., Mielke, R., Kalbe, E., et al., 2002, Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET, Neurolmage 17:302–316.Google Scholar
  50. Hess, B., 1983, Non-equili brium dynamics of biochemical processes, Hoppe-Seylers Z. Physiol. Chem. 364:1–20.Google Scholar
  51. Hess, B., 1990, Order and chaos in chemistry and biology, Fresenius J. Anal. Chem. 337:459–468.Google Scholar
  52. Holness, M.J., Langdown, M.L., and Sugden, M.C., 2000, Early-life programming of susceptibility to dysregulation of glucose metabolism and the development of typ 2 diabetes mellitus, Biochem. J. 349:657–665.Google Scholar
  53. Hong, M., and Lee, V.M.Y., 1997, Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons, J. Biol. Chem. 272:19547–19553.Google Scholar
  54. Horner, H.C., Packan, D.R., and Sapolsky, R.M., 1990, Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia, Neuroendocrinology 52:57–64.Google Scholar
  55. Hotamisligil, G.A., Murray, D.L., Choy, L.N., and Spiegelman, B.M., 1994, Tumor necrosis factor a inhibits signaling from the insulin receptor, Proc. Natl. Acad. Sci. USA 91:4854–4858.Google Scholar
  56. Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., and Spiegelman, B.M., 19%, IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α-and obesity-induced insulin resistance, Science 271:665–668.Google Scholar
  57. Hoyer, S., 1985, The effect of age on glucose and energy metabolism in brain cortex of rats, Arch. Gerontol. Geriatr. 4:193–203.Google Scholar
  58. Hoyer, S., 1988, Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significane, Age 11:158–166.Google Scholar
  59. Hoyer, S., 1992, Oxidative metabolism in Alzheimer brain. Studies in early-onset and late-onset cases, Mol. Chem. Neuropathol. 16:207–224.Google Scholar
  60. Hoyer, S., 1995, Age-related changes in cerebral oxidative metabolism. Implications for drug therapy, Drugs Aging 6:210–218.Google Scholar
  61. Hoyer, S., 1996, Oxidative metabolism deficiencies in brain of patients with Alzheimer’s disease, Acta Neurol. Scand. Suppl. 165:18–24.Google Scholar
  62. Hoyer, S., 1998, Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis, J. Neural Transm. 105:415–422.Google Scholar
  63. Hoyer, S., 2002a, The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review, J. Neural. Transm. 109:991–1002.Google Scholar
  64. Hoyer, S., 2002b, The brain insulin signal transduction system in sporadic (type II) Alzheimer disease: an update, J. Neural Transm. 109:341–360.Google Scholar
  65. Hoyer, S., and Krier, C, 1986, Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex, Neurobiol. Aging 7:23–29.Google Scholar
  66. Hoyer, S., and Nitsch, R., 1989, Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type, J Neural. Transm. (Gen. Sect.) 75: 227–232.Google Scholar
  67. Hoyer, S., Nitsch, R., and Oesterreich, K., 1990, Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type, Neurosci. Lett. 117:358–362.Google Scholar
  68. Hoyer, S., Nitsch, R., and Oesterreich, K., 1991, Predominant abnormality in cerebral glucose utilization in lateonset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset dementia and incipient early-onset cases, J. Neural. Transm. (PD-Sect.) 3:1–14.Google Scholar
  69. Hoyer, S., Lannert, H., Nöldner, M., and Chatterjee, S.S., 1999, Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb 761), J. Neural. Transm. 106:1171–1188.Google Scholar
  70. Ida, Y., Tanaka, M., Kohno, Y., Nakagawa, R., Iimori, K., Tsuda, A., Hoaki, Y., and Nagasaki, N., 1982, Effects on age and stress on regional noradrenaline metabolism in the rat brain, NeurobioL Aging 3:233–236.Google Scholar
  71. Imaizumi, K., Miyoshi, K., Katayama, T., Yoneda, T., Taniguchi, M., Kudo, T., and Tohyama, M., 2001, The unfolded protein response and Alzheimer’s disease, Biochim. Biophys. Acta 1536:85–96.Google Scholar
  72. Iwata, A., Chen, X.-H., Mclntosh, T.K., Browne, K.D., and Smith, D.H., 2002, Long-term accumulation of amyloid-β in axons following brain trauma without persistent upregulation of amyloid precursor protein genes, J. Neuropathol. Exp. Neurol. 61:1056–1068.Google Scholar
  73. Jiang, C.H., Tsien, J.Z., Schultz, P.G., and Hu, K., 2001, The effects of aging on gene expression in the hypothalamus and cortex of mice, Proc. Natl. Acad. Sci. USA 98:1930–1934.Google Scholar
  74. Jick, H., Zornberg, G.L., Jick, S.S., Seshadri, S., and Drachman, D.A., 2000, Statins and the risk of dementia, Lancet 356:1627–1631.Google Scholar
  75. Joseph, J., Shukitt-Hale, B., Denisova, N.A., Martin, A., Perry, G., and Smith, M.A., 2001, Copernicus revisited: amyloid beta in Alzheimer’s disease, Neurobiol. Aging 22:131–146.Google Scholar
  76. Kadekaro, M., Crane, A.M., and Sokoloff, L., 1985, Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat, Proc. Natl. Acad. Sci. USA 82: 6010–6013.Google Scholar
  77. Kaufer, D., Friedman, A., Seidman, S., and Soreq, H., 1998, Acute stress facilitates long-lasting changes in cholinergic gene expression, Nature 393:373–377.Google Scholar
  78. Kaufman, R.J., 1999, Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls, Genes Dev. 13:1211–1233.Google Scholar
  79. Klein, J., 2000, Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids, J. Neural Transm. 107:1027–1063.Google Scholar
  80. Kliegel, M., Rott, C, d’Heureuse, V., Becker, G. and Schönemann, P., 2001, Dementia in the very old is not a necessity: results from the Heidelberg Centenarian Study, Z. Gerontopsychol-psychiatrie 14:169–180.Google Scholar
  81. Lai, J.C.K., and Cooper, A.J.L., 1991, Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivatives, Neurochem. Res. 16: 795–803.Google Scholar
  82. Lannert, H., 1998, Effekte von Streptozotozin, Streptozotozin/Estradiol und Kortikosteron auf Lernverhalten, Gedächtnisfunktion und Energiestoffwechsel im zerebralen Kortex und Hippokampus der adulten männlichen Ratte, Thesis, University of Heidelberg.Google Scholar
  83. Lannert, H., and Hoyer, S., 1998, Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats, Behav. Neurosci. 112:1199–1208.Google Scholar
  84. Lannert, H., Gorgas, K., Meißner, I., Wieland, F.T., and Jeckel, D., 1998, Functional organization of the Golgiapparatus in glycosphingolipid biosynthesis: Lactosylceramide and subsequent glycosplingolipids are formed in the lumen of the late Golgi, J. Biol. Chem. 273:2939–2946.Google Scholar
  85. Le Bars, P.L., Katz, M.M., Berman, N., itil, T.M., Freedman, A.M., and Schatzberg, A.F., 1997, A placebocontrolled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group, J. Am. Med. Ass. 278:1327–1332.Google Scholar
  86. Le Bars, P.L., Kieser, M., and Ml, K.Z., 2000, A26-week analysis of a double-blind, placebo-controlled trial of the ginkgo biloba extract EGb 761 in dementia, Dement. Geriatr. Cogn. Disord. 11:230–237.Google Scholar
  87. Leloup, C, Arluison, M., Lepetit, N., Cartier, N., Marfaing-Jallat, P., Ferre, P., and Penicaud, L., 1994, Glucose transporter 2 (GLUT2): expression in specific brain nuclei, Brain Res. 638:221–226.Google Scholar
  88. Leloup, C. Orosco, M., Serradas, P., Nicolaidis, S., and Penicaud, L. 1998, Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppress nervous control of insulin secretion, Mol. Brain Res. 57:275–280.Google Scholar
  89. Löffler, T., Lee, S.K., Nöldner, M., Chatterjee, S.S., Hoyer, S. and Schliebs, R., 2001, Effect of Ginkgo biloba extract (EGb 761) on glucose metabolism-related markers in streptozotocin-damaged rat brain, J. Neural Transm. 108:1457–1474.Google Scholar
  90. Lupien, S., Lecors, A., Lussier, I., Schwartz, G., Nair, N, and Meany, M., 1994, Basal cortisol levels and cognitive deficits in human aging, J. Neurosci. 14:2893–2903.Google Scholar
  91. Mandelkow, E.M., Drewes, G., Biernat, J., Gustke, N., van Lint, J., Vandenheede, J.R., and Mandelkow, E., 1992, Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau, FEBS Lett. 314:315–321.Google Scholar
  92. Martinez, M., Fernandez, E., Frank, A., Guaza, C, de la Fuente, M., and Hernandez, A., 1999, Increased cerebral spinal fluid cAMP levels in Alzheimer’s disease, Brain Res. 846:265–267.Google Scholar
  93. Mastrogiacomo, F., Bergeron, C, and Kish, S.J., 1993, Brain α-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease, J. Neurochem. 61:2007–2014.Google Scholar
  94. Mauch, D.H., Nägler, K., Schumacher, S., Göritz, E.C., Otto, A., Pfrieger, F.W., 2001, CNS synaptogenesis promoted by glia-derived cholesterol, Science 294:1354–1357.Google Scholar
  95. Michikawa, M., and Yanagisawa, K., 1999, Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death, J. Neurochem. 72:2278–2285.Google Scholar
  96. Mielke, R., Herholz, K., Grond, M., Kessler, J., and Heiss, W.D., 1992, Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type, Neurobiol. Aging 13:93–98.Google Scholar
  97. Mirollo, R.E., and Strogatz, S.H., 1990, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math. 50:1645–1649.Google Scholar
  98. Munch, G., Schinzel, R., Loske, C, Wong, A., Durany, N., Li, J.J., Vlassara, H., Smith, M.A., Perry, G., and Riederer P., 1998, Alzheimer’s disease-synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts, J. Neural Transm. 105:439–462.Google Scholar
  99. Mulder, M., Ravid, R., Swaab, D.,F., de Kloet, E.R., Haasdijk, E.D., Julk, J., van der Boom, J. and Havekes, L.M., 1998, Reduced levels of cholesterol, phospholipids, and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4, Alzheimer Dis. Assoc. Disord. 12:198–203.Google Scholar
  100. Nelson, C.A., Wewerka, S., Thomas, K.M., Tribby-Walbridge, S., de Regnier, R., and Georgiff, M., 2000, Neurocognitive sequelae of infants of diabetic mothers, Behav. Neurosci. 114:950–956.Google Scholar
  101. Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.A., and Wurtman, R.J., 1992, Evidence for a membrane defect in Alzheimer disease brain, Proc. Natl. Acad. Sci. USA 89:1671–1675.Google Scholar
  102. Okada, M., Ishikawa, M., and Mizushima, Y., 1991, Identification of a ubiquitin-and ATP-dependent protein degradation in rat cerebral cortex, Biochim. Biophys. Acta 1073:514–520.Google Scholar
  103. Ott, A., Breteler, M.M.B., van Harskamp, F., Claus, J.J., van der Cammen, T.J.M., Grobbee, D.E., and Hofman, A., 1995, Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study, Br. J. Med. 310:970–973.Google Scholar
  104. Papenberg, J., Lanzinger, G., Kommerell, B., and Hoyer, S., 1975, Comparative studies of the electroencephalogram and the cerebral oxidative metabolism in patients with liver cirrhosis, Klin. Wschr. 53:1107–1113.Google Scholar
  105. Peraldi, P., Hotamisligil, G.S., Buurman, W.A., White, M.F., and Spiegelman, B.M., 1996, Tumor necrosis factor (TNF)-α inhibits insulin signaling through stimulation of the p55TNF receptor and activation of sphingomyelinase, J. Biol. Chem. 271:13018–13022.Google Scholar
  106. Perego, C, Vetrugno, C.C., De Simoni, M.G., and Algeri, S., 1993, Aging prolongs the stress-induced release ofnoradrenaline in rat hypothalamus, Neurosci. Lett. 157:127–130.Google Scholar
  107. Pericak-Vance, M.A., Grubber, J., Bailey, L.R., Hedges, D., West, S., Sentoro, L., Kemmerer, B., Hall, J.L., Saunders, A.M., Roses, A.D., et al. 2000, Identification of novel genes in late-onset Alzheimer’s disease, Exp. Gerontol. 35:1343–1352.Google Scholar
  108. Perlmutter, D.H., 1999, Misfolded proteins in the endoplasmine reticulum, Lab. Invest. 79:623–638.Google Scholar
  109. Perry, E.K., Perry, R.H., Tomlinson, B.E., Blessed, G., and Gibson, P.H., 1980, Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic „compartment“ of pyruvate dehydrogenase, Neurosci. Lett. 18:105–110.Google Scholar
  110. Peskind, E.R., Elrod, R., Dobie, D.J., Pascualy, M., Petrie, E., Jensen, C, Brodkin, K., Murray, S., Veith, R.C., and Raskind, M.A., 1998, Cerebrospinal fluid epinephrine in Alzheimer’s disease and normal aging, Neuropsychopharmacology 19:465–471.Google Scholar
  111. Pettegrew, J.W., Klunk, W.E., Kanal, E., Panchalingam, K., and McClure, R.J., 1995, Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia, Neurobiol. Aging 16: 973–975.Google Scholar
  112. Plaschke, K., and Hoyer, S., 1993, Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus, Int. J. Devl. Neurosci. 11:477–483.Google Scholar
  113. Prigogine, I., 1989, What is entropy?, Naturwissenschaften 76:1–8.Google Scholar
  114. Reul, J.M.H.M., Rothuizen, J., and Dekloet, E.R., 1991, Age-related changes in the dog hypothalamic-pituitary-adrenocortical system: neuroendocrine activity and corticosteroid receptors, J. Steroid. Biochem. Molec. Biol. 40:63–69.Google Scholar
  115. Roberts, E.L. jr., and Sick, T.J., 1996, Aging impairs regulation of intracellular pH in rat hippocampal slices, Brain Res. 735:339–342.Google Scholar
  116. Róder, H.M., and Ingram, V.M., 1991, Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios, J. Neurosci. 11:3325–3342.Google Scholar
  117. Rothman, J.E., 1996, The protein machinery of vesicle budding and fusion, Protein Science 5:185–194.Google Scholar
  118. Rothman, J.E., and Wieland, F.T., 1996, Protein sorting by transport vesicles. Science 272:227–234.PubMedCrossRefGoogle Scholar
  119. Rupprecht, R., and Holsboer, F., 1999, Neuroactive steroids: mechanism of action and neuropsychopharmacological perspectives, Trends Neurosci. 22:410–416.Google Scholar
  120. Sacks, W., 1957, Cerebral metabolism of isotopic glucose in normal human subjects, J. Appl. Physiol. 10:37–44.Google Scholar
  121. Sacks, W., 1965, Cerebral metabolism of doubly labelled glucose in human in vivo, J. Appl. Physiol. 20:117–130.Google Scholar
  122. Salehi, A., and Swaab, D.F., 1999, Diminished neuronal metabolic activity in Alzheimer’s disease, J. Neural Transm. 106:955–986.Google Scholar
  123. Salehi, A., Heyn, S., Gonatas, N.K., and Swaab, D.F., 1995, Decreased protein synthetic activity of the hypothalamic tubero mamillary nucleus in Alzheimer’s disease as suggested by smaller Golgi apparatus, Neurosci. Lett. 193:29–32.Google Scholar
  124. Salehi, A., Lucassen, P.J., Pool, C.W., Gonatas, N.K., Ravid, R., and Swaab, D.F., 1994, Decreased neuronal activity in the nucleus basalis of Meynert in Alzheimer’s disease as suggested by the size of the Golgi apparatus, Neuroscience 59:871–880.Google Scholar
  125. Sapolsky, R.M., 1994, Glucocorticoids, stress and exacerbation of excitotoxic neuron death, Sem. Neurosci. 6: 323–331.Google Scholar
  126. Sapolsky, R.M., 1998, The stress of Gulf War syndrome, Nature 393:308–309.Google Scholar
  127. Sapolsky, R.M., Krey, L.C., and McEwen, B.S., 1983, The adrenocortical stress-response in the aged malge rat: impairment of recovery from stress, Exp. Gerontol. 18:55–64.Google Scholar
  128. Sapolsky, R.M., Krey, L.C., and McEwen, B.S., 1986, The neuroendocrinology of stress and aging. The glucocorticoid cascade hypothesis, Endocr. Res. 7:284–301.Google Scholar
  129. Sapolsky, R.M., Zola-Morgan, S., and Squire, L.R., 1991, Inhibition of glucocorticoid secretion by the hippocampal formation in the primate, J. Neurosci. 11:3695–3704.Google Scholar
  130. Seksek, O., Biwersi, J., and Verkman, A.S., 1995, Direct measurement of trans-Golgi pH in living cells and regulation by second messengers, J. Biol. Chem. 270:4967–4970.Google Scholar
  131. Simons, M., Keller, P., de Strooper, B., Beyreuther, K., Dotti, C, and Simons, K., 1998, Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons, Proc. Natl. Acad. Sci. USA 95:6460–6464.Google Scholar
  132. Simons, M., Schwärzler, I., Lütjohann, D., von Bergmann, K., Beyreuther, K., Dichgans, J., Wormstall, H., Hartmann, T., and Schulz, J.B., 2002, Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: A 26-week randomized, placebo-controlled, double-blind trial, Ann. Neurol. 52:346–350.Google Scholar
  133. Sims, N.R., Bowen, D.M., Allen, S.J., Smith, C.C.T., Neary, D., Thomas, D.J., and Davison, A.N., 1983a, Presynaptic cholinergic dysfunction in patients with dementia, J. Neurochem. 40:503–509.Google Scholar
  134. Sims, N.R., Bowen, D.M., Neary, D., and Davison, A.N., 1983b, Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from (U14 C) glucose in vitro in human neocortex, J. Neurochem. 41:1329–1334.Google Scholar
  135. Singh, H., Usher, S., and Poulos, A., 1989, Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain, J. Neurochem. 53:1711–1718.Google Scholar
  136. Solano, D.C., Sironi, M., Bonfini, C, Solerte, S.B., Govoni, S., and Racchi, M., 2000, Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway, FASEB J. 14: 1015–1022.Google Scholar
  137. Sorbi, S., Bird, E.D., and Blass, J.P., 1983, Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain, Ann. Neurol. 13:72–78.Google Scholar
  138. Svennerholm, L., and Gottfries, C.G., 1994, Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II), J. Neurochem. 62:1039–1047.Google Scholar
  139. Swaab, D.F., Raadsheer, F.C., Endert, E.F., Hofman, M.A., Kamphorst, W.C., and Ravid, R., 1994, Increases in cortisol levels in aging and Alzheimer’s disease in postmortem cerebrospinal fluid, Neuroendocrinology 6: 681–687.Google Scholar
  140. Takahashi, L.K., 1998, Prenatal stress: Consequences of glucocorticoids on hippocampal development and function, Int. J. Devl. Neurosci. 16:199–207.Google Scholar
  141. Taubes, G., 1996, Misfolding the way to disease, Science 271:1493–1495.Google Scholar
  142. Thomas, P.J., Qu, B.-H., and Pedersen, P.L., 1995, Defective protein folding as a basis of human disease, Trends Biol. Sci. 20:456–459.Google Scholar
  143. Vallée, M., Maccari, S., Delhi, F., Simon, H., LeMoal, M., and Mayo, W., 1999, Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat, Eur. J. Neurosci. 11:2906–2916.Google Scholar
  144. Valverde, A.M., Teruel, T., Navarro, P., Benito, M., and Lorenzo, M., 1998, Tumor necrosis factor-α causes insulin receptor substrate-2-mediated insulin resistence and inhibits insulin-induced adipogenesis in fetal brown adipocytes, Endodrinology 139:1229–1238.Google Scholar
  145. Verde, C, Pascale, M.C., Martive, G., Lotti, L.V., Torrisi, M.R., Helenius, A., and Bonatti, S., 1995, Effect of ATP depletion and DTT on the transport of membrane proteins from the endoplasmic reticulum and the intermediate compartment to the Golgi complex, Eur. J. Cell Biol. 67:267–274.Google Scholar
  146. Virgin, C.E. jr., Ha, T.P.T., Packan, D.R., Tombaugh, G.C. Yang, S.H., Homer, H.C., and Sapolsky, R.M., 1991, Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity, J. Neurochem. 57:1422–1428.Google Scholar
  147. von der Kammer, H., Mayhaus, M., Albrecht, C, Enderich, J. Wegner, M., and Nitsch, R.M., 1998, Muscarinic acetylcholine receptors activate expression of the Egr gene family of transcription factors, J. Biol. Chem. 273:14538–14544.Google Scholar
  148. Watanabe, C.M.H., Wolffram, S., Ader, P., Rimbach, G., Packer, L., Maguire, J.J., Schultz, P.G., and Gohil, K., 2001, The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba, Proc. Natl. Acad. Sci. USA 98:6577–6580.Google Scholar
  149. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G.G., and Siegel, 2000, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl Coenzmye A reductase inhibitors, Arch. Neurol. 57: 1439–1443.Google Scholar
  150. Wozniak, M., Rydzewski, B., Baker, S.P., and Raizada, M.K., 1993, The cellular and physiological actions of insulin in the central nervous system, Neurochem. Int. 22:1–10.Google Scholar
  151. Wurtman, R.J., 1992, Choline metabolism as a basis for the selective vulnerability of cholinergic neurons, Trends Neurosci. 15:117–122.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Siegfried Hoyer
    • 1
  1. 1.Department of Pathochemistry and General NeurochemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations