Advertisement

Neuroprotection and Dopamine Agonists

  • Zvezdan Pirtošek
  • Dušan Flisar
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 541)

Abstract

Parkinson’s disease is a neurodegenerative disorder characterized by a progressive loss of the dopaminergic neurons in the substantia nigra pars compacta. Accumulating evidence indicates that apoptosis contributes to the cell death in Parkinson’s disease patients’ brain. Excitotoxicity, oxidative stress, and mitochondrial respiratory failure are thought to be the key inducers of the apoptotic cascade. The chapter will review the evidence suggesting that some agents — and dopamine agonists in particular — are neuroprotective and the possible mechanisms whereby these effects might occur.

Keywords

Substantia Nigra Dopaminergic Neuron Dopamine Agonist Motor Complication Single Photon Emission Computer Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, C.H., Sethi, K.D., Hauser, R.A., Davis, T.L., Hammerstad, J.P., Bertoni, J., Taylor, R.L., Sanchez-Ramos, J., and O’Brien, C.F. for the Ropinirole Study Group, 1997, Ropinirole for the treatment of early Parkinson’s disease, Neurology. 49:393–399.Google Scholar
  2. Ahlskog, J.E., 2003, Slowing Parkinson’s disease progression: Recent dopamine agonist trials, Neurology. 60:381–389.Google Scholar
  3. Appel, S.H., 1981, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism and Alzheimer’s disease, Ann Neurol. 10:499–505.Google Scholar
  4. Asanuma, M., Ogawa, N., Nishibayashi, S., Kawai, M., Kondo, Y., and Iwata, E, 1995, Protective effects of pergolide on dopamine levels in the 6-hydroxydopamine-lesioned mouse brain. Arch Int Pharmacodyn Ther. 329:221–230.Google Scholar
  5. Ben-Shachar, D., Zuk, R., and Glinka, Y., 1995, Dopamine neurotoxicity: inhibition of mitochondrial respiration, J Neurochem. 64:718–723.Google Scholar
  6. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., and Greenmyre, J.T., 2000, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nat Neurosci. 3:1301–1306.Google Scholar
  7. Blunt, S.B., Jenner, P., and Marsden, C.D., 1993, Suppressive effect of 1-dopa on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine, Mov Disord. 8:129–133.Google Scholar
  8. Boomsma, F., Meerwaldt, J.D., Man in’t Veld, A.J., Hoverstadt, A., and Schalekamp, M.A., 1989, Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa dexarboxylase, catecholamines and 3-O-methyl-dopa, J Neurol. 236:223–230.Google Scholar
  9. Brooks, D.J., 1993, PET studies on the early and differential diagnosis of Parkinson’s disease, Neurology. 43:S6–S16.Google Scholar
  10. Carter, A.J., and Mueller, R.E., 1991, Pramipexole, a dopamine D2 receptor agonist, decreases the extracellular concentration of dopamine in vivo, Eur J Pharmacol. 200:65–72.Google Scholar
  11. Carvey, P.M., and Ling, Z., 2000, Pramipexole enhances Bcl-xl expression in mesencephalic cultures, Mov Dis. 15 Suppl. 3:17.Google Scholar
  12. Cassarino, D.S., Fall, C.P., Smith, T.S., and Bennett, J.P. Jr., 1998, Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion, J Neurochem. 71:295–301.Google Scholar
  13. Cheng, N., Maeda, T., Kume, T., Kaneko, S., Kochiyama, H., Akaike, A., Goshima, Y., and Misu, Y., 1996, Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons, Brain Res. 16;743:278–283.Google Scholar
  14. Cotzias, G. C, Miller, S.T., Tang, L. C, and Papavasiliou, P.S., 1977, Levodopa, fertility, and longevity, Science. 196:549–551.Google Scholar
  15. Desagher, S., Glowinski, J., and Premont, J., 1996, Astrocytes protect neurons from hydrogen peroxide toxicity, J Neurosci. 16:2553–2562.Google Scholar
  16. Dexter, D.T., Wells, F.R., Agid, F., Less, A.J., Jenner, P., and Marsden, C.D., 1987, Increased iron content in post-mortem parkinsonian brain, Lancet. 2:1219–1220.Google Scholar
  17. Dziewczapolski, G., Murer, G., Agid, Y., Gershanik, O., and Raisman-Vozari, R., 1997, Absence of neurotoxicity of chronic L-DOPA in 6-hydroxydopamine-lesioned rats, Neuroreport. 8:975–979.Google Scholar
  18. Ferger, B., Teismann, P., and Mierau, J., 2000, The dopamine agonist pramipexole scavenges hydroxyl free radicals induced by striatal application of 6-hydroxydopamine in rats: an in vivo microdialysis study, Brain Res. 883:216–223.Google Scholar
  19. Fink, D.J., DeLuca, N.A., Yamada, M., Wolfe, D.P., and Glorioso, J. C, 2000, Design and application of HSV vectors for neuroprotection, Gene Ther. 7:115–119.Google Scholar
  20. Finotti, N., Castagna, L., Moretti, A., and Marzatico, F., 2000, Reduction of lipid peroxidation in different rat brain areas after cabergoline treatment, Pharmacol Res. 42:287–291.Google Scholar
  21. Frucht, S., Rogers, J.D., Greene, P.E., Gordon, M.F., and Fahn, S., 1999, Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology. 52:1908–1910.Google Scholar
  22. Gassen, M., Glinka, Y., Pinchasi, B., and Youdim, M.B., 1996, Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction, Eur J Pharmacol. 308:219–225.Google Scholar
  23. Gassen, M., Gross, A., and Youdim, M.B., 1998, Apomorphine enantiomers protect cultured pheochromocytoma (PC 12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine, Mov Disord. 13:661–667.Google Scholar
  24. Gassen, M., Gross, A., and Youdim, M.B., 1999, Apomorphine, a dopamine receptor agonist with remarkable antioxidant and cytoprotective properties, Adv Neurol. 80:297–302.Google Scholar
  25. Gille, G., Rausch, W.D., Hung, S.T., Moldzio, R., Janetzky, B., Hundemer, H.P., Kolter, T., and Reichmann, H., 2002, Pergolide protects dopaminergic neurons in primary culture under stress conditions, J Neural Transm. 109:633–643.Google Scholar
  26. Golbe, L.I., Di Iorio, G., Bonavita, V., Miller, D. C, and Duvoisin, R. C, 1990, A large kindred with autosomal dominant Parkinson’s disease, Ann Neurol. 27:276–228.Google Scholar
  27. Gomez-Vargas, M., Nishibayashi-Asanuma, S., Asanuma, M., Kondo, Y., Iwata, E., and Ogawa, N., 1998, Pergolide scavenges both hydroxyl and nitric oxide free radicals in vitro and inhibits lipid peroxidation in different regions of the rat brain, Brain Res. 790:202–208.Google Scholar
  28. Goshima, Y., Ohno, K., Nakamura, S., Miyamae, T., Misu, Y., and Akaike, A., 1993, L-dopa induces Ca(2+)-dependent and tetrodotoxin-sensitive release of endogenous glutamate from rat striatal slices, Brain Res. 16:167–170.Google Scholar
  29. Graham, D.G., 1978, Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol Pharmacol. 14:633–643.Google Scholar
  30. Grunblatt, E., Mandel, S., Berkuzki, T., and Youdim, M.B., 1999, Apomorphine protects against MPTP-induced neurotoxicity in mice, Mov Disord. 14:612–618.Google Scholar
  31. Grunblatt, E., Mandel, S., Maor, G., and Youdim, M.B., 2001, Effects of R-and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss, J Neurochem. 77:146–156.Google Scholar
  32. Guttman, M., and the International Pramipexole-Bromocriptine Study Group, 1997, Double-blind comparison of pramipexole and bromocriptine treatment with placebo in advanced Parkinson’s disease, Neurology. 49:1060–1065.Google Scholar
  33. Hall E.D., Andrus P.K., Oostveen J.A., Althaus J.S., and Von Voigtlander P.F., 1996, Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons, Brain Res. 742:80–88.Google Scholar
  34. Han, S.K., Mytilineou, C, and Cohen, G., 1996, L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress, J Neurochem. 66:501–510.Google Scholar
  35. Hefti, F., Melamed, E., Bhawan, J., and Wurtman, R, 1981, Long term administration of 1-dopa does not damage dopaminergic neurons in the mouse, Neurology. 31, 1194–1195.Google Scholar
  36. Hernan, M.A., Takkouche, B., Caamano-Isorna, F., and Gestal-Otero, J.J., 2002, A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease, Ann Neurol. 52:276–284.Google Scholar
  37. Hirsch, E. C, Hunot, S., Damier, P., and Faucheux, B., 1998, Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol. 44:S115–S120.Google Scholar
  38. Homann, C.N., Wenzel, K., Suppan, K., Ivanic, G., Kriechbaum, N., Crevenna, R., and Ott, E., 2002, Sleep attacks in patients taking dopamine agonists: review. BMJ. 324:1483–1487.Google Scholar
  39. Hubble, J.P., Koller, W. C, Cutler, N.R., Sramek, J.J., Friedman, J., Goetz, C, Ranhosky, A., Korts, D., and Elvin, A., 1995, Pramipexole in patients with early Parkinson’s disease, Clin Neuropharmacol. 18:338–347.Google Scholar
  40. Iida, M., Miyazaki, I., Tanaka, K., Kabuto, H., Iwata-Ichikawa, E., and Ogawa, N., 1999, Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist, Brain Res. 838:51–59.Google Scholar
  41. Ishikawa, A., and Tsuji, S., 1996, Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism, Neurology. 47:160–166.Google Scholar
  42. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H.A., Kittel, A., and Saitoh, T., 1995, The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system, Neuron. 14:467–475.Google Scholar
  43. Jenner, P., 1991, Oxidative stress as a cause of Parkinson’s disease, Acta Neurol Scand Suppl 136:6–15.Google Scholar
  44. Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H. V., and Marsden, C.D., 1992, Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease, Ann Neurol. 32 (Suppl):S82–S87.Google Scholar
  45. Kebabian, J.W., and Calne, D.G., 1979, Multiple receptors for dopamine, Nature. 277:93–96.Google Scholar
  46. Kimmel, H.L., Yoyce, A.R., Carroll, F.I., and Kuhar, M.J., 2001, Dopamine D1 and D2 receptors influence dopamine transporter synthesis and degradation in the rat, J Pharmacol Exp Ther. 298:129–140.Google Scholar
  47. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N., 1998, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature. 392:605–608.Google Scholar
  48. Kitamura, Y., Shimohama S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., Smith, M.A., Perry, G., Whitehouse, P.J., and Taniguchi, T., 1998, Alterations of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-I and CPP32, in Alzheimer’s disease. Brain Res. 780:260–269.Google Scholar
  49. Kordower, J.H., Emborg, M.E., Bloch, J., Bloch, J., Ma, S.Y., Chu, Y., Leventhal, L., McBride, J., Chen, E. Y., Palfi, S., Roitberg, B.Z., Brown, W.D., Holden, J.E., Pyzalski, R., Taylor, M.D., Carvey, P., Ling, Z., Trono, D., Hantraye, P., Deglon, N., and Aebischer, P., 2000, Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease, Science. 290:767–773.Google Scholar
  50. Korsching, S., 1993, The neurotrophic factor concept: a reexamination, J Neurosci 13:2739–2748.Google Scholar
  51. Kreiss, D.S., Bergstrom, D.A., Gonzalez, A.M., Huang, K.X., Sibley, D.R., and Walters, J.R., 1995, Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities, Eur J Pharmacol. 227:209–214.Google Scholar
  52. Kumar, R., Agarwal, A.K., and Seth, P.K., 1995, Free radical-generated neurotoxicity of 6-hydroxydopamine, J Neurochem. 65:1906.Google Scholar
  53. Lee, C.S., Samiiand A., Sossi, V., 2000, In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease, Ann Neurol. 47:493–503.Google Scholar
  54. Ling, Z.D., Robie, H. C, Tong, C.W., and Carvey, P.M., 1999, Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures. J Pharmacol Exp Ther. 289:203–210.Google Scholar
  55. Lieberman, A., Ranhosky, A., and Korts, D., 1997, Clinical evaluation of pramipexole in advanced Parkinson’s disease: results of a double-blind, placebo-controlled, parallel-group study, Neurology. 49:1162–1168.Google Scholar
  56. Lieberman, A., Olanow, C.W., Sethi K., Swanson, P., Waters, C.H., Fahn, S., Hurtig, H., Yahr, M., and the Ropinirole Study Group, 1998, A multicenter trial of ropinirole as adjunct treatment for Parkinson’s disease, Neurology. 51:1057–1062.Google Scholar
  57. Maier Hoehn, M.M., 1983, Parkinsonism treated with levodopa: progression and mortality, J Neural Transm Suppl. 19:253–264.Google Scholar
  58. Masserano, J.M., Gong, L., Kulaga, H., Baker, I., and Wyatt, R.J., 1996, Dopamine induces apoptotic cell death of a catecholaminergic cell line derived from the central nervous system, Mol Pharmacol. 50(5):1309–1315.Google Scholar
  59. Matsumine, H., Saito, M., Shimoda-Matsubayashi, S., Tanaka, H., Ishikawa, A., Nakagawa-Hattori, Y., Yokochi, M., Kobayashi, T., Igarashi, S., Takano, H., Sanpei, K., Koike, R., Mori, H., Kondo, T., Mizutani, Y., Schaffer, A.A., Yamamura, Y., Nakamura, S., Kuzuhara, S., Tsuji, S., and Mizuno, Y., 1997, Localization of a gene for an abnormal recessive form of juvenile Parkinsonism to chromosome 6q25. 2-21, Am J Hum Genet. 60:588–596.Google Scholar
  60. McGeer, P.L., Itagaki, S., Boyes, B.E., and McGeer, E.G., 1988, Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains, Neurology. 38:1285–1291.Google Scholar
  61. Melamed, E., Offen, D., Shirvan, A., Djaldetti, R., Barzilai, A., and Ziv, I., 1998, Levodopa toxicity and apoptosis, Ann Neurol. 44:S149–154.Google Scholar
  62. Mena, M.A., Davila, V., and Sulzer, D., 1997, Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures, J Neurochem. 69:1398–1408.Google Scholar
  63. Michel, P.P., and Hefti, F., 1990, Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture, J Neurosd Res. 26:428–435.Google Scholar
  64. Montastruc, J.L., Rascol, O., Senard, J.M., and Rascol, A., 1994, A randomised controlled study comparing bromocriptine to which levodopa was later added, with levodopa alone in previouly untreated patients with Parkinson’s disease: a five year follow-up. J Neurol Neurosurg Psychiatry. 57:1034–1038.Google Scholar
  65. Muralikrishnan, D., and Mohanakumar, K.P., 1998, Neuroprotection by bromocriptine against l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced neurotoxicity in mice, FASEB J. 12:905–912Google Scholar
  66. Murer, M.G., Dziewczapolski, G., Menalled, L.B., Garcia, M. C,. Agid, Y., Gershanik, O., and Raisman-Vozari, R., 1998, Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions, Ann Neurol. 43:561–575.Google Scholar
  67. Mytilineou, C, Han, S.K., and Cohen, G., 1993, Toxic and protective effects of L-dopa on mesencephalic cell cultures, J Neurochem. 61:1470–1478.Google Scholar
  68. Naoi, M., Dostert, P., Yoshida, M., and Nagatsu, T., N-methylated tetrahydro-isoquinolines as dopaminergic neurotoxins, Adv Neurol 60:212–217.Google Scholar
  69. Nishibayashi, S., Asanuma, M., Kohno, M., Gomez-Vargas, M., and Ogawa, N., 1996, Scavenging effects of dopamine agonists on nitric oxide radicals, J Neurochem. 67:2208–2211.Google Scholar
  70. Noh, J.S. and Gwag, B.J., 1997, Attenuation of oxidative neuronal necrosis by a dopamine D1 agonist in mouse cortical cell cultures, Exp Neurol. 146:604–608.Google Scholar
  71. Offen, D., Ziv, I., Sternin, H., Melamed, E., and Hochman, A., 1996, Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease, Exp Neurol. 141:32–39.Google Scholar
  72. Offen, D., Beart, P.M., Cheung, N.S., Pascoe, C.J., Hochman, A., Gorodin, S., Melamed, E., Bernard, R., and Bernard, O., 1998, Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine neurotoxicity, Proc Natl Acad Sci USA. 12:5789–5794.Google Scholar
  73. Offen, D., Ziv, I., Panet, H., Wasserman, L., Stein, R., Melamed, E., and Barzilai, A., 1997, Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bcl-2. Cell Mol Neurobiol. 17:289–304.Google Scholar
  74. Ogawa, N., Asanuma, M., Kondo, Y., Kawada, Y, Yamamoto, M., and Mori, A., 1994a, Differential effects of chronic 1-DOPA treatment on lipid peroxidation in the mouse brain with and without pretreatment with 6-hydroxydopamine, Neurosci Lett. 171:55–58.PubMedCrossRefGoogle Scholar
  75. Ogawa, N., Tanaka, K., Asanuma, M., Kawai, M., Masumizu, T., Kohno, M., and Mori, A., 1994b, Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicals in vitro, Brain Res. 657:207–213.Google Scholar
  76. Olanow, C.W., Fahn, S., Muenter, M, Klawans, H., Hurtig, H., Stem, M., Shoulson, I., Kurlan, R., Grimes, J. D., Jankovic, J., Hoehn, M., Marham, C.H., Duvoisin, R., Reinmuth, O., Leonard, H.A., Ahlskog, E., Feldman, R., Hershey, L., and Yahr, M.D., 1994, A multi-center, double-blind, placebo-controlled trial of pergolide as an adjunct to sinemet in Parkinson’s disease. Mov Disord. 9:40–47.Google Scholar
  77. Olanow, C.V., Hauser R.A., Gauger, L., Malapira, T., Koller, W., Hubble, J., Bushenbark, K., Lilienfeld, D., and Esterlitz, J., 1995, The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol. 38:771–777.Google Scholar
  78. Papavasiliou, P.S., Miller, S.T., Thal, L.J., Nerder, L.J., Houlihan, G., Rao, S.N., and Stevens, J.M., 1981, Age-related motor and catecholamine alterations in mice on levodopa supplemented diet, Life Sci. 28:2945–2952.Google Scholar
  79. Pardo, B., Mena, M.A., Fahn, S., and De Yebenes, J.G., 1993, Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Mov Disord. 8:278–284.Google Scholar
  80. Pardo, B., Mena, M.A., Casarejos, M.J., Paino, C.L., and De Yebenes, J.G., 1995a, Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res. 5:133–143.Google Scholar
  81. Pardo, B., Mena, M.A., and de Yebenes, J.G., 1995b, L-dopa inhibits complex IV of the electron transport chain in catecholamine-rich human neuroblastoma NB69 cells, J Neurochem. 64:576–582.Google Scholar
  82. Parkinson, J., 1819, An Essay on the Shaking Palsy, Sherwood, Neely and Jones, London.Google Scholar
  83. Parkinson Study Group, 2000, Pramipexole vs levodopa as initial treatment for Parkinson’s disease: A randomised controlled trial, JAMA. 284:1931–1938.Google Scholar
  84. Parkinson Study Group, 2002, Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression, JAMA. 287:1653–1661.Google Scholar
  85. Pelton, E.W. 2nd, Kimelberg, H.K., Shipherd, S.V., and Bourke, R.S., 1981, Dopamine and norepinephrine uptake and metabolism by astroglial cells in culture, Life Sci. 28:1655–1663.Google Scholar
  86. Perry, T.L., Young, V.W., Ito, M., Foulks, J.G., Wall, R.A., Godin, D.V., and Clavier, R.M., 1984, Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of l-dopa and carbidopa chronically, J Neurochem. 43:990–993.Google Scholar
  87. Piercey, M.F., Camacho-Ochoa, M., and Smith, M.W., 1995, Functional roles for dopamine-receptor subtypes, Clin Neuropharmacol. 18:34–42.Google Scholar
  88. Pinter, M.M., Pogarell, O., and Oertel, W.M., 1999, Efficacy, safety and tolerance of the non-ergoline agonist pramipexole in the treatment of advanced Parkinson’s disease: a double-blind, placebo controlled, randomised, multicentre study, J Neuro Neurosurg Psychiatry. 66:436–441.Google Scholar
  89. Polymeropoulos, M.H., Higgins, J.J., Golbe, L.I., Johnson, W.G., Ide, S.E., Di Iorio, G., Sanges, G., Stenroos, E.S., Pho, L.T., Schaffer, A.A., Lazzarini, A.M., Nussbaum, R.L., and Duvoisin, R. C, 1996, Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23, Science. 274:1197–1199.Google Scholar
  90. Polymeropoulos, M.H., Lavedan, C, Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R. C, Di Iorio, G., Golbe, L.I., and Nussbaum, R.L., 1997, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science. 276:2045–2047.Google Scholar
  91. Pothos, E.N., Przedborski, S., Davila, V., Schmitz, Y., and Sulzer, D., 1998, D2-Like dopamine autoreceptor activation reduces quantal size in PC12 cells, J Neurosci. 18:5575–5585.Google Scholar
  92. Przedborski, S., Jackson-Lewis, V., Muthane, U., Jiang, H., Ferreira, M, Naini, A.B., and Fahn, S., 1993, Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity, Ann Neurol. 34:715–723.Google Scholar
  93. Przedborski, S., and Jackson-Lewis, V., 1998, Mechanisms of MPTP toxicity., Mov Disord. 13:35–38.Google Scholar
  94. Quinn, N., Parkes, J.D., Janota, I., and Marsden, C.D., 1986, Preservation of the substantia nigra and locus coeruleus in a patient receiving levodopa (2 kg) plus decarboxylase inhibitor over a four year period, Mov Disord. 1, 65–68.Google Scholar
  95. Rajput, A.H., Fenton, M., Birdi, S., and Macaulay, R., Is levodopa toxic to human substantia nigra? Mov Disord. 12:634–638.Google Scholar
  96. Rascol, O., Brooks, D.J., Korczyn, A.D., De Deyn, P.P., Clarke, C.E., and Lang, A.E., for the 056 Study Group, 2000, A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa, N Engl J Med. 342:1484–1491.Google Scholar
  97. Rinne, U.K, 1983, Problems associated with long-term levodopa treatment of Parkinson’s disease, Acta Neurol Scand. 95:19–26.Google Scholar
  98. Rioux, L., Frohna, P.A., Joyce, J.N., and Schneider, J.S., 1997, The effects of chronic levodopa treatment on pre-and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys, Mov Disord. 12:148–158.Google Scholar
  99. Saggu, H., Cooksey, J., Dexter, D., Wells, F.R., Lees, A., Jenner, P., and Marsden, C.D., 1989, A selective increase in particular Superoxide dismutase activity in Parkinson’s substantia nigra, J Neurochem. 53:692–697.Google Scholar
  100. Saji, L.M., Blau, A.D., and Volpe, B.T., 1996, Prevention of transneuronal degeneration of neurons in the substantia nigra reticulate by ablation of the subthalamic nucleus, Exp Neurol. 141:120–129.Google Scholar
  101. Sampaio-Maia, B., Serrao, M.P., and Soares-Da-Silva, P., 2001, Regulatory path-ways and uptake of l-dopa by capillary cerebral endothelial cells, astrocytes and neuronal cells, Am J Phisiol Cell Physiol. 280:C333–C342.Google Scholar
  102. Sanchez-Ramos, J., Overvuk, E., and Ames, B.N., 1994, A marker of oxyradical-mediated DNA damage (8-hydroxy-2’-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain, Neurodegeneration. 3:197–204.Google Scholar
  103. Schapira, A.H. V., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B., and Marsden, C.D., 1989, Mitochondrial complex 1 deficiency in Parkinson’s disease, Lancet. 1:1269.Google Scholar
  104. Schapira, A.H. V., 2002a, Neuroprotection and dopamine agonists, Neurology. 58:S9–S18.Google Scholar
  105. Schapira, A.H. V., 2002b, Dopamine agonists and neuroprotection in Parkinson’s disease, Eur J Neurol 9:1–6.Google Scholar
  106. Schwab, R.S., Amador, L.V., and Levine, J.Y., 1951, Apomorphine in Parkinson’s disease, Trans Am Neurol Assoc. 76:273–279.Google Scholar
  107. Schwartz, J. C, Giros, B., Martres, M.P., and Sokoloff, P., 1992. The dopamine receptor family: molecular biology and pharmacology, Semin Neurosci. 4:99–108.Google Scholar
  108. Semchuk, K.M., Love, E.J., and Lee, R.G., 1992, Parkinson’s disease and exposure to agriculture work and pesticide chemicals, Neurology. 42:1328–1335.Google Scholar
  109. Sethy, V.H., Wu, H., Oostveen, J.A., and Hall, E.D., 1997, Neuroprotective effects of the dopamine agonists pramipexole and bromocriptine in 3-acetylpyridine-treated rats, Brain Res. 754:181–186.Google Scholar
  110. Shannon, K.M., Bennett, J.P., and Friedman, J.H., for the Pramipexole Study Group 1997, Efficacy of pramipexole, a novel dopamine agonist, as monotherapy in mild to moderate Parkinson’s disease, Neurology. 49:724–728.Google Scholar
  111. Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoy-Agid, F., Jenner, P., and Marsden, C.D., 1994, Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia, Ann Neurol. 36:348–355.Google Scholar
  112. Sotnikova, T.D., Gainetdinov, R.R., Grekhova, T.V., and Rayevsky, K.S., 2001, Effects of intrastriatal infusion of D2 and D3 receptor preferring antagonists on dopamine release in rat dorsal striatum (in vivo microdialysis study), Pharmacol Res. 43:283–290.Google Scholar
  113. Spencer, J.P. E., Jenner, A., Aruoma, O.I., Evans, P.J., Kaur, H., Dexter, D.T., Jenner, P., Lees, A.J., Marsden, D.C, and Halliwell, B., 1994, Intense oxidative DNA damage promoted by 1-DOPA and its metabolites: implications for neurodegenerative disease, FEBS Lett. 353:246–250.Google Scholar
  114. Spencer-Smith, T., Parker, W.D. Jr, and Bennett, J.P., 1994, L-DOPA increases nigral production of hydroxyl radicals in vivo: potential 1-DOPA toxicity?, NeuroReport. 5:1009–1011.Google Scholar
  115. Spina, M.B., and Cohen, G., 1988, Exposure of striatal synaptosomes to levodopa elevates levels of oxidized glutathione, J Pharmacol Exp Ther. 247:502–507.Google Scholar
  116. Stocchi, F., Nordera, G., and Marsden, C.D., 1997, Strategies for treating patients with advanced Parkinson’s disease with disastrous fluctuations and dyskinesias, Clin Neuropharmacol. 20:95–115.Google Scholar
  117. Tanaka, M., Sotomatsu, A., Kanai, H., and Hirai, S., 1991, Dopa and dopamine cause cultured neuronal death in the presence of iron. J Neurosci. 101.198–203.Google Scholar
  118. Tanaka, M., Sotomatsu, A., Kanai, H., and Hirai, S., 1992, Combined histochemical and biochemical demonstration of nigral vulnerability to lipid peroxidation induced by DOPA and iron, Neurosci Lett. 140:42–46.Google Scholar
  119. Tanaka, K, Miyazaki, I., Fujita, N., Haque, M.E., Asanuma, M., and Ogawa, N., 2001, Molecular mechanism in activation of glutathione system by ropinirole, a selective dopamine D2 agonist, Neurochem Res. 26:31–36.Google Scholar
  120. Takata, K, Kitamura, Y., Kakimura, J., Kohno, Y., and Taniguchi, T., 2000, Increase of bcl-2 protein in neuronal dendritic processes of cerebral cortex and hippocampus by the antiparkinsonian drugs, talipexole and pramipexole, Brain Res. 872:236–241.Google Scholar
  121. Tipton, K.F., and Singer, T., 1993, Advances in our understanding of the mechanism of the neurotoxicity of MPTP and related compounds, J Neurochem. 61:1191–1206.Google Scholar
  122. Ubeda, A., Montesinos, C, Paya, M., and Alcaraz, M.J., 1993, Iron-reducing and free-radical scavenging properties of apomorphine and some related benzylisoquinolines. Free Radic Biol Med. 15:159–167.Google Scholar
  123. Weill, E., 1884, De l’apomorphine dans certains troubles nerveux. Lyon Med. 48:411–419Google Scholar
  124. Whone, A.L., Remy, P., Davis, M.R., Sabolek, M., Nahmias, C, A. Stoessl, J., Watts, R.L., and Brooks, D.J., 2002, The REAL-PET study: slower progression in early Parkinson’s disease treated with ropinirole compared with 1-dopa, Neurology. 58:A82–A83.Google Scholar
  125. Yee, R.E., Cheng, D.W., Huang, S. C, Namavari, M., Satyamurthy, N., and Barrio, J.R., 2001, Blood-brain barrier neuronal membrane transport of 6-[18F]fluoro-L-DOPA, Biochem Pharmacol. 62:1409–1415.Google Scholar
  126. Yoshioka, M., Tanaka, K., Miyazaki, I., Fujita, N., Higashi, Y., Asanuma, M., and Ogawa, N., 2002, The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals, Neurosci Res. 43:259–267.Google Scholar
  127. Youdim, M.B., Gassen, M., Gross, A., Mandel, S., and Grunblatt, E., 2000, Iron chelating, antioxidant and cytoprotective properties of dopamine receptor agonist; apomorphine, J Neural Transm. 58:83–96.Google Scholar
  128. Zou, L, Jankovic, J., Rowe, D.B., Xie, W., Appel, S.H., and Le, W., 1999, Neuroprotection by pramipexole against dopamine-and levodopa-induced cytotoxicity, Life Sci. 64:1275–1285.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Zvezdan Pirtošek
    • 1
  • Dušan Flisar
    • 2
  1. 1.Centre for Extrapyramidal Disorders, Neurology HospitalUniversity Medical CentreLjubljanaSlovenia
  2. 2.Neurology DepartmentGeneral HospitalMariborSlovenia

Personalised recommendations