Neuroprotection in Ischemic/Hypoxic Disorders

From the Preclinical to the Clinical Testing
  • Zoltán Nagy
  • László Simon
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 541)


In the brain, the most common lesion is ischemic and/or hypoxic by origin. The insult results in neuronal loss. The primary aim of therapeutic interventions to reduce the volume of brain damage and thus, to lessen the neurological impairment, disability and handicap among stroke survivors. Reduction in infarct size may also reduce the risk of early death, particularly due to ischemic cerebral edema and transtentorial herniation.


Nitric Oxide Vascular Endothelial Growth Factor Nerve Growth Factor Cerebral Ischemia Focal Cerebral Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Li, M. Chopp, N. Jiang, C. Zaloga, In situ detection of DNA fragmentation after focal cerebral ischemia in mice, Brain Res Mol Brain Res 28, 164–168 (1995).PubMedCrossRefGoogle Scholar
  2. 2.
    Y.Li, M. Chopp, N. Jiang, Z.H. Zang, C. Zaloga, Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats, Stroke 26, 1252–1258 (1995).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Chopp, Y. Li, and Z.G. Zhang, Protein Expression and brain plasticity after transient middle Cerebral Artery Occlusion in the rat, In: Maturation Phenomenon in Cerebral Ischemia II./Springer (1998).Google Scholar
  4. 4.
    K. Matsushita, T. Matsuyama, K. Kitagawa, M. Matsumoto, T. Yanagihara, M. Sugita, Alternations of Bcl-2 family proteins precede cytoskeletal proteolysis in the penumbra, but not in infarct centers following focal celebrai ischemia in mice, Neuroscience 83, 439–448 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Chen, S.H. Graham, P.H. Chan, J. Lan, R.L. Zhou, R.P. Simon, Bcl-2 in expressed in neurons that survive focal ischemia in the rat, Neuroreport 6, 394–398 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Asahi, M. Hoshimaru, Y. Uemura, T. Tokime, M. Kojima, T. Ohtsuka, N. Matsura, T. Aoki, K. Shibahara, H. Kikuchi, Expression of interleukin-1 beta converting enzyme gene family and bcl-2 gene family in the rat brain following permanent occlusion of the middle cerebral artery, J. Cereb Blood Flow Metab 17, 11–18 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Namura, J. Zhu, K. Fink, M. Endres, A. Srinivasan, K.J. Tomaselli, J. Yuan, M.A. Moskowith, Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia, J Neurosci 18, 3659–3668 (1998).PubMedGoogle Scholar
  8. 8.
    G.Y. Yang, C. Gong, Z. Qin, W. Ye, Y. Mao, A.L. Bertz, Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice, Brain Res Mol Brain Res 69, 135–143 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Nawashiro, D. Martin, J.M. Hallenbeck, Inhibition of tumor necrosis factor and amelioration of brain infarction in mice, J Cereb Blood Flow Metab 17, 229–232 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    M.P. Mattson, Neuroprotective signal transduction: relevance to stroke, Neurosci Biobehav Rev 21, 193–206 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    X. Shi, M. Ding, Z. Dong, F. Chen, J. Ye, S. Wang, S.S. Leonard, V. Castranova, V. Vallyathan, Antioxidant properties of aspirin: characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kappaB activation, and TNF-alpha production, Mol Cell Biochem 199, 93–102.(1999).PubMedCrossRefGoogle Scholar
  12. 12.
    M.A. Stevenson, M.J. Zhao, A. Asea, C.N. Coleman, S.K. Calderwood, Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein-and NF-kappa B-responsive genes, J. Immunol 163, 5608–5616 (1999).PubMedGoogle Scholar
  13. 13.
    K.K.W. Wang, Calpain and caspase: can you tell the difference? TINS No 1, 23, 20–26 (2000).PubMedGoogle Scholar
  14. 14.
    J.S. Kim, S.C. Gautam, M. Chopp, C. Zaloga, M.L. Jones, P.A. Ward, K.M. Welch, Expression of monocyte chemoattractabt protein-1 and macrophage3 inflammatory protein-1 after focal cerebral ischemia in the rat, J Neuroimmunol 56, 127–134 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    I.S. Moon, M.L. Apperson, and M.B. Kennedy, The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl D-aspartate receptor subunit 2B, Proc.Natl.Acad.Sci. 91, 3954–3958 (1994).PubMedCrossRefGoogle Scholar
  16. 16.
    J.P. Mohr, J.M. Orgogozo, M.J.G. Harrison, N.G. Wahlgren, J.H. Gelmers, E. Martinez-Vila, J. Dycka, D. Tettenborn, Meta-analysis of oral nimodipine trials in acute ischaemic stroke Cerebrovasc Dis. 4, 197–203 (1994).CrossRefGoogle Scholar
  17. 17.
    N.G. Wahlgren, Cytoprotective therapy for acute ischaemic stroke, In: M. Fisher, (ed.) Stroke Therapy, Butterworth and Heinemann, Boston, pp. 315–350. (1995).Google Scholar
  18. 18.
    N.G. Wahlgren, A Review of earlier clinical studies on neuroprotective agents and current approaches. Neuroprotective agents and cerebral ischeamia, International Review of Neurobiology 40, 337–353. (1997).PubMedCrossRefGoogle Scholar
  19. 19.
    X. Xie, B. Lancaster, T. Peakman, and J. Garthwaite, Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hyppocampal neurones, Pflügers Arch 430, 437–446 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    J.S. Beckman, Nitric oxide, Superoxide and perosynitrite in CNS injury, Cerebrovascular Diseases pp:209–210. (1997).Google Scholar
  21. 21.
    S.A Lipton, and J.S. Stamler, Actions of redoxrelated congeners of nitric oxide at the NMDA receptor, Neuropharmacology 33, 1229–1233 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    C. Iadecola, Bright and dark sides of nitric oxide in ischemic brain injury, Trends Neurosci 20, 132–139 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    U. DirnagL C. Iadecola, M.A. Moskowitz, Pathobiology of ischemic stroke: an integrated view, Trends Neurosci 22, 391–397. (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    Z. Huang, P.L, Huang, N. Panahian, T. Dalkara, M.C. Fishman, M.A. Moskowitz, Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science 265, 1883–1885 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Nagayama, K. Niwa, T. Nagayama, M.E. Ross, C.Iadecola, The cyclooxygenase-2 inhibitor NS-389 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene, J Cereb Blood Flow Metab 19, 1213–1219 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    P. Marin, K.L. Nastiuk, N. Daniel, J.A. Girault, A.J. Czemik, J. Glowinski, A.C. Nairn, J. Premont, Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons, J Neurosci 17, 3445–3454 (1997).PubMedGoogle Scholar
  27. 27.
    C. Iadecola, F. Zhang, R. Casey, H.B. Clark, M.E. Ross, Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia Stroke 27, 1371–1380 (1996).CrossRefGoogle Scholar
  28. 28.
    G.Y. Yang, C. Gong, Z. Qin, W. Ye, Y. Mao, A.L. Bertz, Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice, Brain Res Mol Brain Res 69, 135–143 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Vastag, J. Skopál, Z. Voko, É. Csonka, Z. Nagy, Expression of Membrane-bound and soluble cell adhesion molecules by human brain microvessel endothelial cells. Microvascular Research 57, 52–60. (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Li, M. Chopp, Z.G. Zhang, R.L. Zhang, J.H. Garcia, Neuronal survival is associated with 72-kDA heat shock protein expression after transient middle cerebral artery occlusion in the rat, J. Neurol Sci 120, 187–194 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Chopp, Y. Li, N. Jiang, R.L. Zhang, J. Prostak, Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain, J Cereb Blood Flow Metab 16, 578–587 (1996).PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang, R.L., Zhang, Z.G., Chopp, M., Zivin, J.A. (1999) Thrombolysis weith tissue plasminogen activator alters adhesion molecule expression in the ischemic rat brain. Stroke, 30, 624–629.PubMedCrossRefGoogle Scholar
  33. 33.
    S. Mun-Bryce, G.A. Rosenberg, Matrix melloproteinases in cerebrovascular disease, J Cereb Blood Flow Metab 18, 1163–1172 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Gasche, M. Fujimura, Y. Morita-Fujimura, J.C. Copin, M. Kawase, J. Massengale, P.H. Chan, Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction, J Cereb Blood Flow Metab 19, 1020–1028 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    J.H. Heo, J. Lucero, T. Abumiya, J.A. Koziol, B.R. Copeland, G.J. del Zoppo, Matrix metalloproteinases increase very early during experimental focal cerebral ischemia, J Cereb Blood Metab 19, 624–633 (1999).CrossRefGoogle Scholar
  36. 36.
    R. Bravo Growth factor responsive genes in fibroblasts, Cell Growth Diff. 1, 305–309 (1990).PubMedGoogle Scholar
  37. 37.
    P.J. Lindsberg, K.U. Frerichs, A.L. Siren, J.M. Hallenbeck, T.S. Nowak, Jr. Heat-shock protein and C-fos expression in focal microvascular brain damage, J Cereb Blood Flow Metab 16, 82–91 (1996).PubMedCrossRefGoogle Scholar
  38. 38.
    J.I. Morgan, and T. Curran, Stimulus-transcription coulping in the nervous system: Involvement of the inducible proto-oncogenes fos an jun, Annu. Rev. Neurosci 14, 421–451 (1991).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Matsushima, R. Schmidt-Kastner, M.J. Hogan, A.M. Hakim, Cortical spreading depression activates tropic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia, Brain Res 807, 47–60 (1998).PubMedCrossRefGoogle Scholar
  40. 40.
    T.S. Nowak, M. Kiessling, Reprogramming of gene expression aafter ischemia, In: W. Walz, N.J. Totowa, (eds.) Cerebral Ischemia: Molecular and Cellular Pathophysiology Humana Press, pp. 145–216. (1999).Google Scholar
  41. 41.
    J.I. Morgan, T. Curran, Immediate-early genes: ten years on, Trends Neurosci 18, 66–67 (1995).PubMedCrossRefGoogle Scholar
  42. 42.
    M. Walton, B. Conner, P. Lawlor, D. Young, E. Sirimanne, P. Gluckman, G. Cole, M. Dragunow, Neuronal death and survival in two models of hypoxic-ischaemic brain damage, Brain Res Brain Res Rev 29, 137–168 (1999).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Kiessling, G. Stumm, Y. Xie, T. Herdegen, A. Aguzzi, R. Bravo, and P. Gass, Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia, J Cereb Blood Flow Metab 13, 914–924 (1993).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Sommer, P. Gass, M. Kiessling, Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state, Brain Pathol 5, 135–144. (1995).PubMedCrossRefGoogle Scholar
  45. 45.
    T.S.Nowak, Jr. Localization of 70 kDa heat shock protein mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 11, 432–439 (1991).CrossRefGoogle Scholar
  46. 46.
    J. Zou, Y. Guo, T. Guettouche, D.F. Smith, R.Voellmy, Repressing of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1, Cell 94, 471–480 (1998).PubMedCrossRefGoogle Scholar
  47. 47.
    M.A. Yenari, S.L. Fink, G.H. Sun, L.K. Chang, M.K. Patel, D.M. Kunis, D. Onley, D.Y. Ho, R.M. Sapolsky, G.K. Steinberg, Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy, Ann Neurol 44, 584–591. (1998).PubMedCrossRefGoogle Scholar
  48. 48.
    M.J. Wagstaff, J. Smith, Y. Collaco-Moares, J.S. De Belleroche, R. Voellmy, R.S. Coffin, D.S. Latchman, Delivery of a constitutively active form of the heat shock factor using a virus vector protects neural cells from thermal or ischemic stress but not from apoptosis, Suppl Eur J Neurosci 10, 3343–3350. (1998).CrossRefGoogle Scholar
  49. 49.
    J.C. Plumier, J.N. Armstrong, N.I. Wood, J.M. Babity, T.C. Hamilton, A.J. Huntrer, H.A. Robertson, R.W. Currie, Differential expression of c-fos, Hsp70 and Hsp27 after photothrombic injury in rat brain, Brain Res Mol Brain Res 45, 239–246 (1997).PubMedCrossRefGoogle Scholar
  50. 50.
    J. Chen, R. Simon, Ischemic tolerance in the brain, Neurology 48, 306-311.(1997).Google Scholar
  51. 51.
    M. Bergeron, D.M. Ferriero, H.J. Vreman, D.K. Stevenson, F.R. Sharp, Hypoxia-ischemia, but not hypoxia alone, induces the expression of heme oxygenase-1 (HSP32) in newborn rat brain. J Cereb Blood Flow Metab, 17, 647–658 (1997).PubMedCrossRefGoogle Scholar
  52. 52.
    G.L. Semenza, Perspectives on oxygen sensing, Cell 98, 281–284 (1999).PubMedCrossRefGoogle Scholar
  53. 53.
    P. Ratcliffe, J. Rourke, P. Maxwell, Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression, J Exp Biol 201, 1153–1162 (1998).PubMedGoogle Scholar
  54. 54.
    M. Bergeron, A.Z. Yu, K.E. Solway, G.L. Semenza, F.R. Sharp, Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischemia in rat brain, Eur J Neurosci 11, 4159–4170 (1999).PubMedCrossRefGoogle Scholar
  55. 55.
    I. Flamme, T. Frohlich, M. von Reutern, A. Kappel, A. Damert, W. Risau, HRF, a putative basic helix-loophelix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels, Mech Dev 63, 51–60 (1997).PubMedCrossRefGoogle Scholar
  56. 56.
    Q.H. Zhai, N. Fuell, F.J. Che, Gene expression of IL-10 in relationship to TNF-alpha, IL-lbeta and IL-2 in the rat brain-following middle cerebral artery occlusion, J Neurol Sci 152, 119–124 (1997).PubMedCrossRefGoogle Scholar
  57. 57.
    S.A. Loddick, A.V. Turnbull, N.J. Rothwell, Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat, J Cereb Blood Flow Metab 18, 176–179 (1998).PubMedCrossRefGoogle Scholar
  58. 58.
    X. Wang, J.A. Ellison, A.L. Siren, P.G. Lysko, T.L. Yue, F.C. Barone, A. Shatzman, G.Z. Feuerstein, Prolonged expression of interferoninducible protein-10 in ischemic cortex after permanent occlusion of the middle cerebral artery in rat, J Neurochem 71, 1194–1204. (1998).PubMedCrossRefGoogle Scholar
  59. 59.
    H. Tomimoto, M. Shibata, M. Ihara, I. Akiguchi, R. Ohtani, H. Budka, A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans, Acta Neuropathol 104(6), 601–7 (2002).PubMedGoogle Scholar
  60. 60.
    M. Nagayama, K. Niwa, T. Nagayama, M.E. Ross, C. Iadecola, The cyclooxygenase-2 inhibitor NS-389 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 19, 1213–1219 (1999).PubMedCrossRefGoogle Scholar
  61. 61.
    N.S. Levy, M.A. Goldberg, A.P. Levy, Sequencing of the human vascular endothelial growth factor (VEGF) 3’ untranslated region (UTR): conversation of five ypoxia-inducible RNA-protein binding sites, Biochim Biophys Acta 1351, 167–173 (1997).Google Scholar
  62. 62.
    C.S. Cobbs, J. Shen, D.A. Greenberg, S.H. Graham, Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat, Neurosci Lett 249, 79–82 (1998).PubMedCrossRefGoogle Scholar
  63. 63.
    M.M. Valter, A. Hugel, H.J. Huang, W.K. Cavenee, O.D. Wiestler, T. Pietsch, N. Wernert, Expression of the Ets-1 transciption factor in human astrocytomas is associated with Fms-like tyrosine kinase-1 (Flt-l)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis. Cancer Res 59, 5608–5614 (1999).PubMedGoogle Scholar
  64. 64.
    J.C. LaMamma, N.T. Kuo, W.D. Lust, Hypoxia-induced brain angiogenesis. Signals and consequences, Adv. Exp Med Biol 454, 287–293 (1998).CrossRefGoogle Scholar
  65. 65.
    N. van Bruggen, H. Thibodeaux, J.T. Palmer, W.P.P. Lee, LFu, B. Cairns, D. Tumas, R. Gerlai, S.P. Williams, M. van Lookeren Campagne, N. Ferrara, VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injuri in the mouse brain, J Clin Invest 104, 1613–1620 (1999).PubMedCrossRefGoogle Scholar
  66. 66.
    M. Verheij, R. Bose, X.H. Lin, B. Yao, W.D. Jarvis, S. Grant, M.J. Birrer, E. Szabo, LI. Zon, J.M. Kyriakis, A. Haimovitz-Friedman, Z. Fuks, and R.N. Kolesnick, Requirement for ceramide-initiated SAPK/JNK signalling in stress induced apoptosis Nature 380, 75–79 (1996).PubMedCrossRefGoogle Scholar
  67. 67.
    W.H. Lee, G.M. Wang, L.B. Seaman, S.J. Vannucci, Coordinate IGF-I and IGFBP5 gene expression in perinatal rat brain after hypoxia-ischemia J Cereb Blood Flow Metab 16, 227–236 (1996).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Fujimura, Y. Gasche, Y. Morita-Fujimura, M. Kawase, P.H. Chan, Early decrease of apurinic/apyrimidinic endonuclease expression after transient focal cerebral ischemia in mice, J Cereb Blood Flow Metab 19, 495–501 (1999).PubMedCrossRefGoogle Scholar
  69. 69.
    M. Fujimura, T. Morita-Fujimura Ysugawara, P.H. Chan, Early decrease of XRCCL a DNA base excision repair protein, may contribute to DNA fragmentation after transient focal cerebral ischemia in mice Stroke 30, 2456–2462 (1999).PubMedCrossRefGoogle Scholar
  70. 70.
    M. Chopp, Y. Li, and Z.G. Zhang, Protein Expression and brain plasticity after transient middle Cerebral Artery Occlusion in the rat. In: Maturation Phenomenon in Cerebral Ischemia II./Springer(1998).Google Scholar
  71. 71.
    S.S. Magavi, B.R. Leavitt, J.D. Macklis, Induction of neurogenesis in the neocortex of adult mice, Nature 405(6789), 951–5 (2000).PubMedCrossRefGoogle Scholar
  72. 72.
    S.S. Magavi, J.D. Macklis, Induction of neuronal type-specific neurogenesis in the cerebral cortex of adult mice: manipulation of neural precursors in situ, Brain Res Dev Brain Res 134(1-2), 57–76 (2002).PubMedCrossRefGoogle Scholar
  73. 73.
    D.J. Gladstone, S.E. Black, A.M. Hakim, Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions, Stroke 33(8), 2123–36 (2002).PubMedCrossRefGoogle Scholar
  74. 74.
    Z. Nagy, P. Vargha, L. Kovács, P. Bönōczk, Meta-analysis of Cavinton, Praxis 49, 420–4 (1998).Google Scholar
  75. 75.
    V.L. Feigin, B.M. Doronin, T.F. Popova, E.V. Gribatcheva, D.V.Tchervov, Vinpocetine treatment in acute ischaemic stroke: a pilot single-blind randomized clinical trial, Eur J Neurol 8(1), 81–5 (2001).PubMedCrossRefGoogle Scholar
  76. 76.
    C. Stole, Indole derivativesas neuroprotecrants, Life Sci. 65, 1943–1950 (1999).CrossRefGoogle Scholar
  77. 77.
    M. Miyazaki, The effect of a cerebral vasodilator, vinpocetine, on cerebral vascular resistance evaluated by the Doppler ultrasonic technique in patients with cerebrovascular diseases, Angiology 46(1), 53–8 (1995).PubMedCrossRefGoogle Scholar
  78. 78.
    N. Miyata, H. Yamaura, M. Tanaka, M. Muramatsu, K. Tsuchida, S. Okuyama, S. Otomo, Effects of VA-045, a novel apovincaminic acid derivative, on isolated blood vessels: cerebroarterial selectivity, Life Sci 52(18), PL181-6 (1993).Google Scholar
  79. 79.
    V. Lakics, P. Molnar, S.L. Erdo, Protection against veratridine toxicity in rat cortical cultures: relationship to sodium channel blockade. Neuroreport 7(1), 89–92 (1995).PubMedGoogle Scholar
  80. 80.
    V. Lakics, M.G. Sebestyen, S.L. Erdo, Vinpocetine is a highly potent neuroprotectant against veratridine-induced cell death in primary cultures of rat cerebral cortex, Neurosci Lett 185(2), 127–30 (1995).PubMedCrossRefGoogle Scholar
  81. 81.
    K. Ishihara, H. Katsuki, M. Sugimura, M. Satoh, Idebenone and vinpocetine augment long-term potentiation in hippocampal slices in the guinea pig, Neuropharmacology 28(6), 569–73 (1989).PubMedCrossRefGoogle Scholar
  82. 82.
    S. Kaneko, H. Takahashi, M. Satoh, The use of Xenopus oocytes to evaluate drugs affecting brain Ca2+ channels: effects of bifemelane and several nootropic agents, Eur J Pharmacol 189(1), 51–8 (1990).PubMedCrossRefGoogle Scholar
  83. 83.
    P. Molnar, S.L. Erdo, Vinpocetine is as potent as phenytoin to block voltage-gated Na+ channels in rat cortical neurons, Eur J Pharmacol 273(3), 303–6 (1995).PubMedCrossRefGoogle Scholar
  84. 84.
    L. Tretter, V. Actam-Vizi, The neuroprotective drug vinpocetine prevents veratridine-induced [Na+]i and [Ca2+]i rise in synaptosomes, Neuroreport 9(8), 1849–53 (1998).PubMedCrossRefGoogle Scholar
  85. 85.
    T. Zelles, L. Franklin, I. Koncz, B. Lendvai, G. Zsilla, The nootropic drug vinpocetine inhibits veratridine-induced [Ca2+]i increase in rat hippocampal CA1 pyramidal cells, Neurochem Res 26(8-9):1095–100 (2001).PubMedCrossRefGoogle Scholar
  86. 86.
    M.S. Santos, A.I. Duarte, P.I. Moreira, C.R. Oliveira, Synaptosomal response to oxidative stress: effect of vinpocetine, Free Radic. Res. 32(l):57–66 (2000).PubMedCrossRefGoogle Scholar
  87. 87.
    G.A. King, Protective effects of vinpocetine and structurally related drugs on the lethal consequences of hypoxia in mice, Arch.Int.Pharmacodyn. Ther. 286, 299–307 (1987).PubMedGoogle Scholar
  88. 88.
    M. Yamamoto, M. Shimizu, S. Kawabata, Cerebral vasodilators potentiate the anti-anoxic activity of indeloxazine hydrochloride, a new cerebral activator, Neuropharmacology 28, 313–317 (1989).PubMedCrossRefGoogle Scholar
  89. 89.
    H. Hara, A. Ozaki, M.S.T. Yoshidomi, Protective effect of KB-2796, a new calcium antagonist, in cerebral hypoxia and ischemia, Arch. Int. Pharmacodyn. Ther. 304, 206–218 (1990).PubMedGoogle Scholar
  90. 90.
    J.C. Lamar, M. Beaughard, C. Bromont, H. Pignet, Effects of vinpocetine in four pharmacological models of cerebral ischemia, In: Krieglstein J ed. Pharmacology of cerebral ischemia. Amsterdam: Elsevier, pp 334–339 (1986).Google Scholar
  91. 91.
    K Yamaguchi, S. Yamada, M. Yoshida, K. Kyuki, S. Okuyama, Anti-anoxic effects of VA-045, J. Pharmacol. 61 (suppl. 1),184 (1993).Google Scholar
  92. 92.
    S. Takeo, K. Tanonaka, T. Hirano, T. Miyake, J. Okamoto, Cerebroprotective action of naftidrofuryl oxalate I:prolongation of survival time and protection of cerebral energy metabolism in bilateral carotid artery ligated mice, Folia Pharmacol. Japon. 91, 267–273 (1988).CrossRefGoogle Scholar
  93. 93.
    V. Vaizov, T.M. Plotnikova, T. Yakimova, O. Vaizova, A. Saratikov, Ammonium succinate: An effective corrector of circulatory cerebral hypoxia, Byull. Eksp. Biol.Med. 118, 276–278 (1995).Google Scholar
  94. 94.
    V.J. DeNoble, Vinpocetine enhances retrieval of a step-through passive avoidance response in rats, Pharmacol. Biochem. Behav. 26, 183–186 (1987).CrossRefGoogle Scholar
  95. 95.
    D. Groó, E. Pálosi, L. Szporny, Effect of vinpocetine in scopolamine-induced learning and memory impairments, Drug Dev. Res. 11, 29–36 (1987).CrossRefGoogle Scholar
  96. 96.
    D. Groó, E. Pálosi, L. Szporny, Comparison of the effects of vinpocetine, vincamine, and nicergoline on the normal and hypoxia-damaged learning process in spontaneously hypertensive rats, Drug Dev.Res. 15, 75–85 (1988).CrossRefGoogle Scholar
  97. 97.
    D. Groó, E. Pál osi, L. Szporny, Effect of vinpocetine in memory disturbances induced by different damaging agents, In: Krieglstein J, ed. Pharmacology of cerebral ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH; 229–305.Google Scholar
  98. 98.
    C. Backhaus, C Karkoutly, M. Welsch, J. Krieglstein, A mouse model of focal cerebral ischemia for screening neuroprotective drug effects, J. Pharmacol. Toxicol.Meth. 27, 27–32 (1992).CrossRefGoogle Scholar
  99. 99.
    G. Bielenberg, Effects of vincamine and vinpocetine on infarct size in focal cerebral ischemia, Arch Pharmacol 354 (suppl. 1):R122, (1992).Google Scholar
  100. 100.
    R. Rischke, J. Krieglstein, Increased LCGU and decreased LCBF in rat hippocampus 7 days after ischemia, J Neurochem. 52(suppl S56), (1989).Google Scholar
  101. 101.
    R. Rischke, J. Krieglstein, Effects of vinpocetine on local cerebral blood flow and glucose utilization seven days after forebrain ischemia in the rat, Pharmacology 41, 153–160 (1990).PubMedCrossRefGoogle Scholar
  102. 102.
    R. Rischke, J. Krieglstein, Protective effect of vinpocetine against brain damage caused by ischemia, Jpn. J. Pharmacol. 56, 349–356 (1991).PubMedCrossRefGoogle Scholar
  103. 103.
    T. Araki, K. Kogure, K. Nishioka, Comparative neuroprotective effects of pentobarbital, vinpocetine, flunarizine and ifenprodil on ischemic neuronal damage in the gerbil hippocampus, Res. Exp.Med. (Berl.) 190, 19–23 (1990).CrossRefGoogle Scholar
  104. 104.
    K. Kogure, H. Kato, Pharmacological modification of post-ischemic brain cell injury, Clin. Neuropharmacol. 13(suppl. 2), 154–155 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Zoltán Nagy
    • 1
  • László Simon
    • 1
  1. 1.Department of Vascular NeurologySemmelweis UniversityBudapestHungary

Personalised recommendations