Skip to main content

Neurotransmitter Release in Experimental Stroke Models: The Role of Glutamate-Gaba Interaction

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 541))

Abstract

Stroke or cerebrovascular accident reduces blood flow and decreases oxygen supply (ischemia) in brain tissue. This may be resulted from vascular obstruction when a blood vessel is blocked or by hemorrhage when bleeding occurs into the brain tissue. Decrease in oxygen supply shifts pH to acidosis and increases extracellular K+ concentration, which depolarizes neural cell membrane. Anoxic depolarization leads to excessive release of glutamate, which then activates various glutamate receptors in the synapse or the extrasynaptic space. Opening of ionotropic glutamate receptors (NMDA, AMPA and kainate receptors) causes influx of Na+ through the activated glutamate-gated ion channels. In response to anoxia, Ca2+ also enters the cells in excessive amounts via activated NMDA receptors and Ca2+-permeable AMPA receptors. This will lead to activation of several Ca2+-dependent intracellular signal transduction pathways (proteases, kinases, endonucleases, lipoxygeneses and nitric oxide synthase), which ultimately leads to neural death (Vizi et al., 1996; Parsons et al., 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, G., Solyom, S., Csuzdi, E., Berzsenyi, P., Ling, I., Tarnawa, I., Hamori, T., Pallagi, I., Horvath, K., Andrasi, F., Kapus, G., Harsing, L.G., Jr., and Kiraly, I., 2000, New non competitive AMPA antagonists, Bioorg. Med. Chem. 8:2127.

    Google Scholar 

  • Aghajanian, G.K., and Marek, G.J., 2000, Serotonin model of schizophrenia: emerging role of glutamate mechanisms, Brain Res. Rev. 31:302.

    Google Scholar 

  • Baldwin, H.A., Williams, J.L., Snares, M., Ferriera, T., Cross, A.J., Green, A.R., 1994, Attenuation by chlormethiazole of the rise in extracellular amino acids following focal ischemia in the cerebral cortex of the rat, Br. J. Pharmacol. 112:188.

    Google Scholar 

  • Beani, L., Tanganelli, S., Antonelli, T., Ferraro L., Morari, M., Spalluto, P., Nordberg, A., and Bianchi, C, 1991, Effect of acute and subchronic nicotine treatment on cortical efflux of [3H]-D-aspartate and endogenous GABA in freely moving guinea-pigs, Br. J. Pharmacol. 104:15.

    Google Scholar 

  • Bederson, J.B., Pitts, L.H., Gremano, S.M., Nishimura, M. C, Davis, R.L., and Bartkowski, H.M., 1986, Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats, Stroke 17:1304.

    Google Scholar 

  • Bolam, J.P., and Bennett, B.D., 1995, Microcircuitry of the neostriatum, in: Molecular and Cellular Mechanisms of Neurostriatal Function, M. A. Ariano, and D. J. Surmeier, EDS., Landes Company, Austin, TX, pp. 1–19.

    Google Scholar 

  • Carlsson, A., Hansson, L.O., Waters, N., and Carlsson, M.L., 1997, Neurotransmitter aberration in schizophrenia: new perspectives and therapeutic implications, Life Sci. 61:75.

    Google Scholar 

  • Chen, Q., Veenman, I., Knopp, K., Yan, Z., Medina, L., Song, W.-J., Surmeier, D.J., and Reiner, A., 1998, Evidence for the preferential location of glutamate receptor-1 subunits of AMPA receptors to the dendritic spines of medium spiny neurons in rat striatum, Neuroscience 83:749.

    Google Scholar 

  • Coyle, J.T., Puttfarcken, P., 1993, Oxidative stress, glutamate and neurodegenerative disorders, Science 262:689.

    Google Scholar 

  • Gajkowska, B., Mossakowski, M.J., 1994, Ischemia inhibits GABAergic neurons of the rat thalamic reticular nucleus. An immunocytochemical study, Folia Neuropathol, 32:139.

    Google Scholar 

  • Gerfen, C.R., The neostriatal mosaic: multiple levels of compartmental organization, TINS 15:133.

    Google Scholar 

  • Globus, M.Y.-Y., Busto, R., Martinez, E., Valdes, I., Dietrich, W.D., and Ginsberg, M.D., 1991, Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and γ-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat, J. Neurochem. 57:470.

    Google Scholar 

  • Gonzales, C, Lin, R.C.-S., and Chesselet, M.-F., 1992, Relative sparing of GABAergic intemeurons in the striatum of gerbils with ischemia-induced lesions, Neurosci. Lett. 135:53.

    Google Scholar 

  • Harsing, L.G., Jr., Sershen, H., Lajtha, A., 1992, Dopamine efflux from striatum after chronic nicotine: evidence for autoreceptor desensitization, J. Neurochem. 59:48.

    Google Scholar 

  • Harsing, L.G., Jr., Zigmond, M.J., 1997, Influence of dopamine on GABA release in striatum: evidence for D1-D2 interactions and non-synaptic influences, Neuroscience 77:419.

    Google Scholar 

  • Harsing, L.G., Jr., Zigmond, M.J., 1998, Postsynaptic integration of cholinergic and dopaminergic signals on medium size GABAergic projection neurons in the neostriatum. Brain Res. Bull. 45:607.

    Google Scholar 

  • Harsing, L.G., Jr., Csillik-Perczel, V., Ling, I., and Solyom, S., 2000, Negative allosteric modulators of AMPA-preferring receptors inhibit [3H]GABA release in rat striatum, Neurochem. Internat. 37:33.

    Google Scholar 

  • Iversen, L.L., and Kelly, J.S., 1975, Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells, Biochem. Pharmac. 24:933.

    Google Scholar 

  • Juranyi, Zs., Harsing, L.G., Jr., Zigmond, M.J., 2003, A new method for the investigation of transmitter release in complex corticostriatal slice preparation in vitro, J. Neurosci. Methods in press.

    Google Scholar 

  • Katsura, M., Lino, T., and Kuriyama, K., 1992, Changes in content of neuroactive amino acids and acetylcholine in the rat hippocampus following transient forebrain ischemia, Neurochem. Int. 21:243.

    Google Scholar 

  • Kawai, K, Penix, L.P., and Kawara, N., 1995, Development of susceptibility to audiogenic seizures following cardiac arrest cerebral ischemia, J. Cereb. Blood Flow Metab. 15:248.

    Google Scholar 

  • Kita, H., 1996, Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparation. Neuroscience 70:925.

    Google Scholar 

  • Leyden, P.D., 1997, GABA and neuroprotection, Int. Rev. Neurohiol. 40:233.

    Google Scholar 

  • Longa, E.Z., Weinstein, P.R., Carlson S., and Cummins, R., 1989, Reversible middle cerebral artery occlusion craniectomy in rats, Stroke 28:84.

    Google Scholar 

  • Martin, R.L., Lloyd, H.G.E., and Cowan, A.I., 1994, The early events of oxygen and glucose deprivation: setting the scene for neural death? TINS 17:251.

    Google Scholar 

  • Miluseva, E., Doda, M., Pasztor, E., Lajtha, A., Sershen, H., and Vizi, E.S., 1992, Regulatory interactions among axon terminals affecting the release of different transmitters from rat striatal slices under hypoxic and hypoglycemic conditions, J. Neurochem. 69:946.

    Google Scholar 

  • Nelson, R.M., Green, A.R., Lambert, D.G., and Hainsworth, A.H., 2000, On the regulation of ischaemiainduced glutamate efflux from rat cortex by GABA; in vitro studies with GABA, clomethiazole and pentobarbitone, Br. J. Pharmacol. 130:1124.

    Google Scholar 

  • Nitsch, C, Goping, G., and Klatzo, I., 1989, Preservation of GABAergic perykaria and boutons after transient ischemia in the gerbil hippocampal CA1 field, Brain Res. 495:243.

    Google Scholar 

  • Parsons, C.G., Danysz, W., and Quack, G., 1998, Glutamate in CNS disorders as a target for drug development: An update, Drug News Perspect. 11:523.

    Google Scholar 

  • Phillis, J.W., Smith-Barbour, M., Perkins, L.M., O’Regan M.H., 1993, GYKI 52466 and ischemia-evoked neurotransmitter amino acid release from rat cerebral cortex, NeuroReport 4:109.

    Google Scholar 

  • Ren, Y., Li, X., and Xu, Z. C, 1997, Asymmetrical protection of neostriatal neurons against transient forebrain ischemia by unilateral dopamine depletion, Exp. Neurol. 146:250.

    Google Scholar 

  • Rowley, H.L., Martin, K.F., Marsden, C.A., 1995, Determination of in vivo amino acid neurotransmitters y high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation, J. Neurosci. Methods, 54:93.

    Google Scholar 

  • Schwartz-Bloom, R.D., and Sah, R., 2001, γ-Aminobutyric acidA neurotransmission and cerebral ischemia, J. Neurochem. 77:353.

    Google Scholar 

  • Scif-El-Nasr, M., and Khattab, M., 2002, Influence of inhibition of adenosine uptake on the γ-aminobutyric acid level of the ischemic rat brain, Arzneim. Forsck/Drug Res. 52:353.

    Google Scholar 

  • Smith A.D., Bolam, J.P., 1990, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones, TINS 13:259.

    Google Scholar 

  • Snyder, G., Keller, R.W., Zigmond, M.J., 1990, Dopamine efflux from striatal slices after intracerebral 6-hydroxydopamine: evidence for compensatory hyperactivity of residual terminals, J. Pharm. Exp. Ther. 253:867.

    Google Scholar 

  • Sopala, M., Schweizer, S., Schaffer, N., Nurnberg, E., Kreuter, J., Sciller, E., and Danysz, W., 2002, Neuroprotective activity of a nanoparticulate formulation of the glycines site antagonist MRZ 2/576 in transient focal ischaemia in rats, Arzneim.-Forsch/Drug Res. 52:168.

    Google Scholar 

  • Szatkowski, M., Attwell, D., 1994, Triggering and execution of neural death in brain ischaemia: two phases of glutamate release by different mechanisms, TINS 17:359.

    Google Scholar 

  • Szerb, J. C, 1982. Effect of nipecotic acid, a γ-aminobutyric acid transport inhibitor, on the turnover and release of γ-aminobutyric acid in the rat cerebral cortex, J. Neurochem. 39:850.

    Google Scholar 

  • Taguchi, T., Miyake, K., and Tanonnaka, K., 1993, Sustained changes in acetylcholine and amino acid contents of brain regions following microsphere embolism in rats, Jpn. J. Pharmacol, 62:269

    Google Scholar 

  • Tamawa, I., Vizi, E.S., 1998, 2,3-Benzodiazepine AMPA antagonists, Rest. Neurol. Neurosci. 13:41.

    Google Scholar 

  • Vizi, E.S., Mike, A., and Tarnawa, I., 1996 2,3-Benzodiazepines (GYKI 52466 and analogs): negative allosteric modulators of AMPA receptors, CNS Drug Reviews 2:91.

    Google Scholar 

  • Warner, D.S., Martin, H., Ludwig, P., McAllister, A., Keane, J.F. W., and Weber, E., 1995, In vivo models of cerebral ischemia: effects of parenterally administered NMDA receptor glycine site antagonists, J. Cereb. Blood Flow and Metab. 15:188.

    Google Scholar 

  • Zigmond, M.J., Abercrombie, E.D., Berger, T.W., Grace A.A., and Strieker, E.M., 1990, Compensations after lesions of central dopaminergic neurons: some clinical and basic implication, TINS 13:290.

    Google Scholar 

  • Zoli, M., Grimaldi, R., Ferrari, R., Zini I, and Agnati, L.F., 1997, Short-and long-term changes in striatal neurons and astroglia after transient forebrain ischemia in rats, Stroke 28:1049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Harsing, L.G. et al. (2004). Neurotransmitter Release in Experimental Stroke Models: The Role of Glutamate-Gaba Interaction. In: Vécsei, L. (eds) Frontiers in Clinical Neuroscience. Advances in Experimental Medicine and Biology, vol 541. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8969-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8969-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4740-8

  • Online ISBN: 978-1-4419-8969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics