Skip to main content

Kynurenines in Neurodegenerative Disorders: Therapeutic Consideration

  • Conference paper
Frontiers in Clinical Neuroscience

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 541))

Abstract

The kynurenine pathway is a major route for the conversion of tryptophane to NAD and NADP (Figure 1), leading to production of a number of biologically active molecules with neuroactive properties. During the last decades, the interest in kynurenines has been emerged as two major metabolites of this pathway, quinolinic acid (QUIN) and kynurenic acid (KYNA), act on glutamate receptors. QUIN was shown to be an agonist of the N-methyl-D-aspartate (NMDA) type of glutamate receptors. KYNA was shown to be an antagonist the same NMDA receptors with a high affinity to the glycin coagonist site. The NMDA receptor activation has been implicated in many neurological disorders such as stroke, brain injury, Parkinson’s disease, Huntington’s disease and multiple sclerosis. The receptor antagonists reduce the excitotoxic damage both in vivo1,2,3 and in vitro4 and could be used against neurodegenerative disorders. However the classical antagonists have some adverse effects, that limit their clinical use such as memory and learning impairment, psychosis and cell deaths.5 Influencing the kynurenine pathway provides an option to increase the neuroprotective capacity and decrease the concentration of neurotoxic metabolites. On the other hand, the impariment of kynurenine system has been implicated in several neurological disorders such as stroke, brain injury, Parkinson’s disease, Huntington’s disease and multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon RP, Young RS, Stout S, Cheng J: Inhibition of excitatory neurotransmission with kynurenate reduces brain edema in neonatal anoxia. Neurosci. Lett. 71, 361–364, (1986).

    Article  PubMed  CAS  Google Scholar 

  2. Gill R, Foster AC, Woodruff GN: Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J. Neurosci. 7, 3343–3349, (1987).

    PubMed  CAS  Google Scholar 

  3. Faden Al, Demediuk P, Panter SS, Vink R: The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798–800, (1989).

    Article  PubMed  CAS  Google Scholar 

  4. Choi DW, Koh JY, Peters S: Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8, 185–196, (1988).

    PubMed  CAS  Google Scholar 

  5. Muir K.W, Lees KR: Clinical experience with excitatory amino acid antagonist drugs. Stroke 26, 503–513, (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR: Blood-barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56, 2007–2017, (1991).

    Article  PubMed  CAS  Google Scholar 

  7. Lapin IP: Depressor effect of kynurenine and its metabolites in rats. Life Sci. 19, 1479–1484, (1976).

    Article  PubMed  CAS  Google Scholar 

  8. Lapin IP: Kynurenines and seizures. Epilepsia 22, 257–265, (1981).

    Article  PubMed  CAS  Google Scholar 

  9. Pinelli A, Ossi C, Colombo R, Tofanetti O, Spazzi L: Experimental convulsions in rats induced by intraventricular administration of kynurenine and structurally related compounds. Neuropharmacology 23, 333–337, (1984).

    Article  PubMed  CAS  Google Scholar 

  10. Perkins, MN, Stone TW: An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 247, 184–187, (1982).

    Article  PubMed  CAS  Google Scholar 

  11. Kessler M, Baudry M, Terramani T, Lynch G: Complex interactions between a glycin binding site and NMDA receptors. Soc. Neurosci. Abst. 13, 760, (1987).

    Google Scholar 

  12. Kessler M, Terramani T, Lynch G, Baudry M: A glycin site associated with NMDA receptors: characterisation and identification of new class of antagonists. J. Neurochem. 52:1319–1328, (1989).

    Article  PubMed  CAS  Google Scholar 

  13. Birch PJ, Grossman CJ, Hayes AG: Kynurenate and Fg9041 both competetive and non-competetive antagonist actions at excitatory amino acid receptors. Eur. J. Pharmacol. 151, 313–316, (1988).

    Article  PubMed  CAS  Google Scholar 

  14. Birch PJ, Grossman CJ, Hayes AG: Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycin receptor. Eur. J. Pharmacol. 154, 85–88, (1988).

    Article  PubMed  CAS  Google Scholar 

  15. Stone TW: Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 45, 309–379, (1993).

    PubMed  CAS  Google Scholar 

  16. Füvesi J, et al: unpublished observations.

    Google Scholar 

  17. Moroni F, Russi P, Carla V, Lombardi G: Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neurosci. Lett. 94, 145–150, (1988).

    Article  PubMed  CAS  Google Scholar 

  18. Moroni F, Alesiani N, Galli A, Mori F, Pecorani R, Carla V, Cherici G, Pellicciari R: Thiokynurenates-a new group of antagonists of the glycin modulatory site of the NMDA receptors. Eur. J. Pharmacol. 375, 87–100,(1991).

    Article  Google Scholar 

  19. Vécsei L, Beal MF: Intracerebroventricular injection of kynurenic acid, but not kynurenine, induces ataxia and stereotyped behavior in rats. Brain Res. Bull. 25, 623–627, (1990).

    Article  PubMed  Google Scholar 

  20. Vécsei L, Miller J, MacGarvey U, Beal MF: Kynurenine and probenecid inhibit pentylenetetrazol-and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res. Bull. 28, 233–238,(1992).

    Article  PubMed  Google Scholar 

  21. Turski WA, Schwarcz R: On the disposition of intrahippocampally injected kynurenic acid in the rat. Exp. Brain. Res. 71, 563–567, (1998).

    Article  Google Scholar 

  22. Dedek J, Baumes R, Tien-Duc N, Gomeni R, Korf J: Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum. J. Neurochem. 33, 687–695, (1979).

    Article  PubMed  CAS  Google Scholar 

  23. Morrison PF, Morishige GM, Beagles KE, Heyes MP: Quinolinic acid is extruded from the brain by a probenecid-sensitive carrier system: a quantitative analysis. J. Neurochem. 72, 2135–2144, (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Stone TW: Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog. Neurobiol. 64, 185–218, (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Rios C, Santamaria A: Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem. Res. 16, 1139–1143,(1991).

    Article  PubMed  CAS  Google Scholar 

  26. Guidetti P, Schwarcz R: 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur. J. Neurosci. 11, 3857–3863, (1999).

    Article  PubMed  CAS  Google Scholar 

  27. Tone S, Takikawa O, Habara-Ohkubo A, Kadoya A, Yoshida R, Kido R: Primary structure of human indoleamine 2, 3-dioxygenase deduced from the nucleotide sequence of its cDNA. Nucleic Acid. Res. 18, 367,(1990).

    Article  PubMed  CAS  Google Scholar 

  28. Dai W, Gupta SL: Regulation of indoleamine 2, 3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. J. Biol. Chem. 265, 19871–19877, (1990).

    CAS  Google Scholar 

  29. Hayaishi O, Okamoto H.: Localization and some properties of kynurenine-3-hydroxylase and kynurenine aminotransferase. Am. J. Clin. Nutr. 24, 805–806, (1971).

    PubMed  CAS  Google Scholar 

  30. I Alberati-Giani D, Buchli R, Malherbe P, Broger C, Lang G, Kohler C, Lahm HW, Cesura AM: solation and expression of a cDNA clone encoding human kynureninase. Eur. J. Biochem. 239, 460–468, (1996).

    Google Scholar 

  31. Toma S, Nakamura M, Tone S, Okuno E, Kido R, Breton J, Avanzi N, Cozzi L, Speciale C, Mostardini M, Gatti S, Benatti L: Cloning and recombinant expression of rat and human kynureninase. FEBS. Lett. 408, 5–10, (1997).

    Article  PubMed  CAS  Google Scholar 

  32. Okuno E, Nakamura M, Schwarcz R: Two kynurenine aminotransferases in human brain. Brain Res. 542, 307–312, (1991).

    Article  PubMed  CAS  Google Scholar 

  33. Guidetti P, Okuno E, Schwarcz R: Characterization of rat brain kynurenine aminotransferases I and II. J. Neurosci. Res. 50, 457–465, (1997).

    Article  PubMed  CAS  Google Scholar 

  34. Csillik A, Knyihár E, Okuno E, Krisztin-Peva B, Csillik B, Vécsei L: Effect of 3-nitropropionic acid on kynurenine aminotransferase in the rat brain. Exp. Neurol. 177, 233–241, (2002).

    Article  PubMed  CAS  Google Scholar 

  35. Knyihar-Csillik E, Okuno E, Vecsei L: Effects of in vivo sodium azide administration on the immunohistochemical localization of kynurenine aminotransferase in the rat brain. Neuroscience 94, 269–277, (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Gal EM, Sherman AD: Synthesis and metabolism of L-kynurenine in rat brain. J. Neurochem. 30, 607–613, (1998).

    Article  Google Scholar 

  37. Guidetti P, Eastman CL, Schwarcz R: Metabolism of [5-3H]kynurenine in the rat brain in vivo: evidence for the existence of a functional kynurenine pathway. J. Neurochem. 65, 2621–2632, (1995).

    Article  PubMed  CAS  Google Scholar 

  38. Heyes MP, Alchim CL, Wiley A, Major EO, Saito K, Markey SP: Human microglia convert L-tryptophan into the neurotoxin quinolinic acid. Biochem. J. 320, 595–597, (1996).

    PubMed  CAS  Google Scholar 

  39. Schwarcz R, Ceresoli G, Guidetti P: Kynurenine metabolism in the rat brain in vivo. Effect of acute excitotoxic insults. Adv. Exp. Med. Biol. 398, 211–219, (1996).

    CAS  Google Scholar 

  40. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ: Kynurenine pathway metabolism in human astroyctes: a paradox for neuronal protection. J. Neurochem. 78, 842–853, (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Lehrmann E, Molinari A, Speciale C, Schwarcz R: Immunohistochemical visualization of newly formed quinolinate in the normal and excitotoxically lesioned rat striatum. Exp. Brain. Res. 141, 389–397, (2001).

    Article  PubMed  CAS  Google Scholar 

  42. Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mourdian MM, Sadler AE, Keilp J, Rubinow D, Markey SP: Quinolinic acid in cerebrospinal fluid and serum in HIV-l infection: relationhip to clinical and neurologic status. Ann. Neurol. 29, 202–209, (1991).

    Article  PubMed  CAS  Google Scholar 

  43. Heyes MP, Saito K, Lackner A, Wiley CA, Achim CL, Markey SP: Sources of the neurotoxin quinolinic acid in the brain of HIV-l infected patients and retrovirus-infected macaques. FASEB. J. 12, 881–896, (1998).

    PubMed  CAS  Google Scholar 

  44. Halperin JJ, Heyes MP: Neuroactive kynurenines in Lyme borreliosis. Neurology 42, 43–50, (1992).

    Article  PubMed  CAS  Google Scholar 

  45. Rejdak K, Bartosik-Psujek H, Dobosz B, Kocki T, Grieb P, Giovannoni G, Turski WA, Stelmasiak Z: Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci. Lett. 331, 63–65, (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Flanagan EM, Erickson JB, Viveros OH, Chang SY, Reinhard Jr JF: Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis. J. Neurochem. 64, 1192–1196, (1995).

    Article  PubMed  CAS  Google Scholar 

  47. Chiarugi A, Cozzi A, Ballerini C, Massacesi L, Moroni F: Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis. Neuroscience 102, 687–95, (2001).

    Article  PubMed  CAS  Google Scholar 

  48. Cammer W: Oligodendrocyte killing by quinolinic acid in vitro. Brain Res. 896, 157–160, (2001).

    Article  PubMed  CAS  Google Scholar 

  49. Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, Brew BJ: IFN-betalb induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J. Interferon. Cytokine. Res. 21, 1097–1101, (2001).

    Article  PubMed  CAS  Google Scholar 

  50. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318, (1983).

    Google Scholar 

  51. Beal MF, Kowall N W, Ellison DW, Mazurek MF, Swartz KJ, Martin JB: Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171, (1986).

    Article  PubMed  CAS  Google Scholar 

  52. Reynolds GP, Pearson SJ, Halket J, Sandier M: Brain quinolinic acid in Huntington’s disease. J. Neurochem. 50, 1959–1960, (1988).

    Article  PubMed  CAS  Google Scholar 

  53. Schwarcz R, Tamminga CA, Kurlan R, Shoulson I: CSF levels of quinolinic acid in Huntington’s disease and schizophrenia. Ann. Neurol. 24, 580–582, (1988).

    Article  PubMed  CAS  Google Scholar 

  54. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJP, Lackner A, Larsen SA, Lee K, Leonard HL, Markey SP, Martin A, Milstein S, Mouradian MM, Pranzatell MR, Quearry BJ, Salazar A, Smith M, Straus SE, Sunderland T, Swedo SE, Tourtellotte WW: Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurologic disease. Brain 115, 1249–1273, (1992).

    Article  PubMed  Google Scholar 

  55. Guidetti P, Wu HQ, Schwarcz R: In situ produced 7-chlorokynurenate provides protection against quinolinate-and malonate-induced neurotoxicity in the rat striatum. Exp. Neurol. 163, 123–130, (2000).

    Article  PubMed  CAS  Google Scholar 

  56. Widner B, Leblhuber F, Fuchs D: Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. J. Neural. Transm. 109, 181–189, (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Ogawa T, Matson WR, Beal, MF, Myers RH, Bird ED, Milbury P, Saso S: Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42, 1702–1706, (1992).

    Article  PubMed  CAS  Google Scholar 

  58. Heyes MP, Nowak Jr TS: Delayed increases in regional brain quinolinic acid follow transient ischemia in the gerbil. J. Cereb. Blood. Flow. Metab. 10, 660–667, (1990).

    Article  PubMed  CAS  Google Scholar 

  59. Saito K, Nowak TS Jr, Markey SP, Heyes MP: Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J. Neurochem. 60, 180–192, (1993).

    Article  PubMed  CAS  Google Scholar 

  60. Saito K, Nowak Jr TS, Markey SP, Heyes MP: Delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J. Neurochem. 60, 180–192, (1992).

    Article  Google Scholar 

  61. Barattè S, Molinari A, Veneroni O, Speciale C, Benatti L, Salvati P: Temporal and spatial changes of quinolinic acid immunoreactivity in the gerbil hippocampus following transient cerebral ischemia. Mol. Brain. Res. 59, 50–57, (1998).

    Article  PubMed  Google Scholar 

  62. Sinz EH, Kochanek PM, Heyes MP, Wisniewski SR, Bell MJ, Clark RSB, Dekosky ST, Blight AR, Marion DW: Quinolinic acid is increased in CSF and associated with mortality after traumatic brain injury in humans. J. Cereb. Blood. Flow. Metab. 18, 610–615, (1998).

    Article  PubMed  CAS  Google Scholar 

  63. Blight AR, Cohen TI, Saito K, Heyes MP: Quinolinic acid accumulation and functional deficits following experimental spinal cord injury. Brain 118, 735–752, (1995).

    Article  PubMed  Google Scholar 

  64. Blight AR, Leroy Jr EC, Heyes MP: Quinolinic acid accumulation in injured spinal cord: time course, distribution, and species differences between rat and guinea pig. J. Neurotrauma. 14, 89–98, (1997).

    Article  PubMed  CAS  Google Scholar 

  65. Lapin IP: Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J. Neural. Transm. 42, 37–43, (1978).

    Article  PubMed  CAS  Google Scholar 

  66. Foster AC, Vezzani A, French ED, Schwarcz R: Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 48, 273–278, (1984).

    Article  PubMed  CAS  Google Scholar 

  67. McMaster OG, Du F, French ED, Schwarcz R: Focal injection of aminooxyacetic acid produces seizures and lesions in rat hippocampus: evidence for mediation by NMDA receptors. Exp. Neurol. 113, 378–385, (1991).

    Article  PubMed  CAS  Google Scholar 

  68. McMaster OG, Baran H, Wu HQ, Du F, French ED, Schwarcz R: Gamma-acetylenic GABA produces axon-sparing neurodegeneration after focal injection into the rat hippocampus. Exp. Neurol. 124, 184–191, (1993).

    Article  PubMed  CAS  Google Scholar 

  69. Carpenedo R, Chiarugi A, Russi P, Lombardi G, Carla V, Pellicciari R, Moroni F, Mattoli L: Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience 61, 237–244, (1994).

    Article  PubMed  CAS  Google Scholar 

  70. Nakagawa Y, Asai H, Miura T, Kitoh J, Mori H, Nakano K: Increased expression of the 3-hydroxyanthranilate-3, 4-dioxygenase gene in brain of epilepsy-prone El mice. Mol. Brain. Res. 58, 132–137, (1998).

    Article  PubMed  CAS  Google Scholar 

  71. Nakano K, Asai H, Kitoh J: Abnormally high activity of 3-hydroxyanthranilate 3, 4-dioxygenase in brain of epilepsy-prone El mice. Brain. Res. 572, 1–4, (1992).

    Article  PubMed  CAS  Google Scholar 

  72. Nakano K, Takahashi S, Mizobuchi M, Kuroda T, Kitoh KJ: High levels of quinolinic acid in brain of epilepsy-prone E1 mice. Brain. Res. 619, 195–198, (1993).

    Article  PubMed  CAS  Google Scholar 

  73. Heyes MP, Wyler AR, Devinsky O, Yergey JA, Markey SP, Nadi NS: Quinolinic acid concentrations in brain and cerebrospinal fluid of patients with intractable complex partial seizures. Epilepsia 31, 172–177, (1990).

    Article  PubMed  CAS  Google Scholar 

  74. Yamamoto H, Shindo I, Egawa B, Horiguchi K: Kynurenic acid is decreased in cerebrospinal fluid of patients with infantile spasms. Pediatr. Neurol. 10, 9–12, (1994).

    Article  PubMed  CAS  Google Scholar 

  75. Yamamoto H, Murakami H, Horiguchi K, Egawa B: Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain. Dev. 17, 327–329, (1995).

    Article  PubMed  CAS  Google Scholar 

  76. Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC: Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry. 50, 521–530, (2001).

    Article  PubMed  CAS  Google Scholar 

  77. Tamminga CA: Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiol.12, 21–36, (1998).

    Article  PubMed  CAS  Google Scholar 

  78. Baran H, Jellinger K, Derecke L: Kynurenine metabolism in Alzheimer’s disease. J. Neural. Transm. 106, 165–181, (1999).

    Article  PubMed  CAS  Google Scholar 

  79. Baran H, Cairns N, Lubec B, Lubec G: Increased kynurenic acid levels and decreased brain kynurenine aminotransferase I in patients with Down syndrome. Life. Sci. 58, 1891–1899, (1996).

    Article  PubMed  CAS  Google Scholar 

  80. Hargreaves RJ, Rigby M, Smith D, Hill RG: Lack of effect of L-687, 414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br. J. Pharmacol. 110, 36–42, (1993).

    Article  PubMed  CAS  Google Scholar 

  81. Baron BM, Harrison BL, Miller FP, McDonald IA, Salituro FG, Schmidt CJ, Sorensen SM, White HS, Palfreyman MG: Activity of 5, 7-dichlorokynurenic acid, a potent antagonist at the NMDA receptor-associated glycine binding site. Mol. Pharmacol. 38, 554–561, (1990).

    PubMed  CAS  Google Scholar 

  82. Baron BM, Harrison BL, McDonald IA, Meldrum BS, Palfreyman MG, Salituro FG, Siegel BW, Slone AL, Turner JP, White HS: Potent indole-and quinoline-containing NMDA antagonists at the strychnine-insensitive glycine binding site. J. Pharmacol. Exp. Ther. 262, 947–956, (1992).

    PubMed  CAS  Google Scholar 

  83. Leeson PD, Carling RW, Moore KW, Moseley AM, Smith JD, Stevenson G, Chan T, Baker R, Foster AC, Grimwood S, Kemp JA, Marshall GR, Hoogsteen K:4-Amido-2-carboxytetrahydroquinolines. Structure-activity relationships for antagonism at the glycine site of the NMDA receptor. J. Med. Chem. 35, 1954–1968, (1992).

    Article  PubMed  CAS  Google Scholar 

  84. Kulagowski JJ, Baker R, Curtis NR, Leeson PD, Mawer IM, Moseley AM, Ridgill MP, Rowley M, Stansfield I, Foster AC:3’-(Arylmethyl)-and 3’-(aryloxy)-3-phenyl-4-hydroxyquinolin-2(1 H)-ones: orally active antagonists of the glycine site on the NMDA receptor. J. Med.Chem. 37, 1402–1405, (1994).

    Article  PubMed  CAS  Google Scholar 

  85. Bristow LJ, Flatman KL, Hutson PH, Kulagowski JJ, Leeson PD, Young L, Tricklebank MD: The atypical neuroleptic profile of the glycine/N-methyl-D-aspartate receptor antagonist, L-701324, in rodents. J. Pharmacol. Exp. Therap. 277, 578–585, 1996.

    CAS  Google Scholar 

  86. Salituro FG, Tomlinson RC, Baron BB, Demeter DA, Weintraub HJR, McDonald IA: Design, synthesis and molecular modeling of 3-acylamino-2-carboxyindole NMDA receptor glycine-site antagonists. Bioorg. Med Chem. Lett. 1, 455–460, (1991).

    Article  CAS  Google Scholar 

  87. Rao TS, Gray NM, Dappen MS, Cler JA, Mick SJ, Emmett MR, Iyengar S, Monahan JB, Cordi AA, Wood PL: Indole-2-carboxylates, novel antagonists of the NMDA-associated glycine recognition site-in vivo characterization. Neuropharmacology 32, 139–147, (1993).

    Article  PubMed  CAS  Google Scholar 

  88. Sacco RL, DeRosa JT, Haley EC Jr, Levin B, Ordronneau P, Phillips SJ, Rundek T, Snipes RG, Thompson JL: The Glycine Antagonist in Neuroprotection Americas Investigators. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. JAMA 285, 1719–1728, (2001).

    Article  PubMed  CAS  Google Scholar 

  89. Nozaki K, Beal MF: Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. J. Cereb. Blood. How. Metab. 12, 400–407, (1992).

    Article  CAS  Google Scholar 

  90. Vécsei L, Beal MF: Influence of kynurenine treatment on open-field activity, elevated plus-maze, avoidance behaviors and seizures in rats. Pharmacol. Biochem. Behav. 37, 71–76, (1992).

    Article  Google Scholar 

  91. Wu H-Q, Guidetti P, Goodman JH, Varasi M, Ceresoli-Borroni G, Speciale C, Scharfman HE, Schwarcz R: Kynurenergic manipulations influence excitatory amino acid receptor function and excitotoxic vulnerability in the rat hippocampus in vivo. Neuroscience 97, 243–251, (2000).

    Article  PubMed  CAS  Google Scholar 

  92. Hokari M, Wu H-Q, Schwarcz R, Smith QR: Facilitated brain uptake of 4-chlorokynurenine and conversion to 7-chlorokynurenic acid. Neuroreport 8, 15–18, (1996).

    Article  PubMed  CAS  Google Scholar 

  93. Wu H-Q, Salituro FG, Schwarcz R: Enzyme-catalyzed production of the neuroprotective NMDA receptor antagonist 7-chlorokynurenic acid in the rat brain in vivo. Eur. J. Pharmacol. 319, 13–20, (1997).

    Article  PubMed  CAS  Google Scholar 

  94. Wu H-Q, Lee S-C, Scharfman HE, Schwarcz R: L-4-chlorokynurenine attenuates kainate-induced seizures and lesions in the rat. Exp. Neurol. 177, 222–232, (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Battaglia G, La Russa M, Bruno V, Arenare L, Ippolito R, Copani A, Bonina F, Nicoletti F: Systemically administered D-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain. Res. 860, 149–156, (2000).

    Article  PubMed  CAS  Google Scholar 

  96. Röver S, Cesura AM, Hugenin P, Kettler R, Szente A: Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl) benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. 40, 4378–4385, (1997).

    Article  PubMed  Google Scholar 

  97. Russi P, Alesiani M, Lombardi G, Davolio P, Pellicciari R, Moroni F: Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J. Neurochem. 59, 2076–2080, (1992).

    Article  PubMed  CAS  Google Scholar 

  98. Chiarugi A, Moroni F: Quinolinic acid formation in immune-activated mice: studies with (m-nitrobenzoyl) alanine (mNBA) and 3, 4-dimethoxy-[N-4-(3-nitrophenyl)thiazol-2-yl]benzenesulfonamide (Ro 61-8048), two potent and selective inhibitors of kynurenine hydroxylase. Neuropharmacology 38, 1225–1233,(1999).

    Article  PubMed  CAS  Google Scholar 

  99. Cozzi A, Carpenedo R, Moroni F: Kynurenine hydroxylase inhibitors reduce ischaemic brain damage. Studies with (m-nitrobenzoyl)-alanine (mNBA) and 3, 4-dimethoxy-[N-4-(nitrophenyl)thiazol-2-benzenesulfonamide (Ro61-8048) in models of focal or global brain ischaemia. J. Cereb. Blood. Flow. Metab. 19, 771–777,(1999).

    Article  PubMed  CAS  Google Scholar 

  100. Urenjak J, Obrenovitch TP: Kynurenine 3-hydroxylase inhibition in rats: effects on extracellular kynurenic acid concentration and N-methyl-D-aspartate-induced depolarisation in the striatum. J. Neurochem. 75, 2427–2433, (2000).

    Article  PubMed  CAS  Google Scholar 

  101. Todd WP, Carpenter BK, Schwarcz R: Preparation of 4-halo-3-hydroxyanthranilates and demonstration of their inhibition of 3-hydroxanthranilate oxygenase in rat and human brain tissue. Prep. Biochem. 19, 155–165, (1989).

    Article  PubMed  CAS  Google Scholar 

  102. Walsh JL, Todd WP, Carpenter BK, Schwarcz R:4-Halo-3-hydroxyanthanilic acids: potent competitive inhibitors of 3-hydroxyanthranilic acid oxygenase in vitro. Biochem. Pharmacol. 42, 985–990, (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Klivényi, P., Toldi, J., Vécsei, L. (2004). Kynurenines in Neurodegenerative Disorders: Therapeutic Consideration. In: Vécsei, L. (eds) Frontiers in Clinical Neuroscience. Advances in Experimental Medicine and Biology, vol 541. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8969-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8969-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4740-8

  • Online ISBN: 978-1-4419-8969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics