Skip to main content

Advances in Neuroprotection Research for Neurodegenerative Diseases

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 541))

Abstract

Recent advances in science enable new and closer insights into brain structure and function. The extent of CNS damage due to ischemia, or neurodegeneration can be followed by the use of modern brain imaging technology such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) and radiolabeled tracers. Ex vivo the systematic use of gene expression arrays is becoming more and more important to select sensitive genes as targets for neuroprotection. And gene therapy is considered as an alternative approach to trigger neuroprotection in experimental models of neurodegeneration. At the same time as these modern technologies pave their way, new promising pharmacological intervention concepts to halt disease progression of Parkinson’s and Alzheimer’s disease, and to diminish ischemia reperfusion injury, have emerged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gerlach, P. Riederer, M. B. Youdim, Neuroprotective therapeutic strategies, comparison of experimental and clinical results, Biochem. Pharmacol. 50(1), 1–16 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. E. Grün blatt, R. Schlö ßer, M. Gerlach, and P. Riederer, Preclinical versus clinical neuroprotection, in Parkinson’s disease: Advances in Neurology 91, edited by A. Gordin, S. Kaakkola, and H. Teräväinen (Lippincott Williams & Wilkins, Philadelphia, 2003), pp. 309–328.

    Google Scholar 

  3. C. E. Clarke, and M. Guttman, Dopamine agonist monotherapy in Parkinson’s disease, Lancet 360(9347), 1767–1769 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. W. Birkmayer, P. Riederer, L. Ambrozi, and M. H. Youdim, Implications of combined treatment with “Madopar“ and L-deprenyl in Parkinson’s disease; A long-term study, Lancet 1(8009), 439–443 (1977).

    Article  PubMed  CAS  Google Scholar 

  5. J. Knoll, J. Dallo, and, T.T. Yen, Striatal dopamine, sexual activity and lifespan, Longevity of rats treated with (-) deprenyl, Life Sci. 45(6), 525–531 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. M. C. Carrillo, K. Kitani, S. Kanai, Y. Sato, K. Miyasaka, and G. O. Ivy, (-)Deprenyl increases activities of Superoxide dismutase and catalase in certain brain regions in old mice, Life Sci. 54(14), 975–981 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. I. Mizuta, M. Ohta, K. Ohta, M. Nishimura, E. Mizuta, K. Hayashi, and S. Kuno, Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes, Biochem. Biophys. Res. Commun. 279(3), 751–755 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. W. Maruyama, and M. Naoi, Neuroprotection by (-)deprenyl and related compounds, Mech. Aging Dev. 111(2-3), 189–200 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Parkinson Study Group, DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease, Arch. Neurol. 46(10), 1052–1060 (1989).

    Article  Google Scholar 

  10. Parkinson Study Group, Effect of deprenyl on the progression of disabilityy in early Parkinson’s disease, N. Engl. J. Med. 321(20), 1364–1371 (1989).

    Article  Google Scholar 

  11. Parkinson Study Group, Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease, N. Engl. J. Med. 328(3), 176–183 (1993).

    Article  Google Scholar 

  12. Parkinson Study Group, Mortality in DATATOP: a multicenter trial in early Parkinson’s disease, Ann. Neurol. 43(3), 318–325 (1998).

    Article  Google Scholar 

  13. J. W. Tetrud, and J. W. Langston, The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease, Science 245(4917), 519–522 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. H. Przuntek, B. Conrad, J. Dichgans, P. H. Kraus, P. Krauseneck, G. Pergande, U. Rinne, K. Schimrigk, J. Schnitker, and H. P. Vogel, SELEDO: a 5-year long-term trial on the effect of selegiline in early parkinsonian patients treated with levodopa. Eur. J. Neurol. 6(2), 141–150 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. J. Birks, and L. Flicker, Selegiline for Alzheimer’s disease (Cochrane Review), Cochrane Database Syst. Rev. 1, CD000442 (2003).

    PubMed  Google Scholar 

  16. M. Gerlach, M. B. Youdim, and P. Riederer, Pharmacology of selegiline, Neurology 47(6 Suppl 3), S137–145 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. K. Magyar, and D. Haberle, Neuroprotective and neuronal rescue effects of selegiline: review, Neurobiology (BP) 7(2), 175–190(1999).

    CAS  Google Scholar 

  18. P. C. Waldmeier, A. A. Boulton, A. R. Cools, A. C. Kato, and W. G. Tatton, Neurorescuing effects of the GAPDH ligand CGP 3466B, J. Neural Transm. 60(Suppl.), 197–214 (2000).

    Google Scholar 

  19. G. Andringa, and A. R. Cools, The neuroprotective effects of CGP 3466B in the best in vivo model of Parkinson’s disease, the bilaterally MPTP-treated rhesus monkey, J. Neural Transm. 60(Suppl.), 215–225 (2000).

    Google Scholar 

  20. E. Kragten, I. Lalande, K. Zimmermann, S. Roggo, P. Schindler, D. Muller, J. van Oostrum, P. Waldmeier, and P. Furst, Glyceraldehyd-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl, J. Biol. Chem. 273(10), 5821–5828 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. K. J. Huebscher, J. Lee, G. Rovelli, B. Ludin, A. Matus, D. Stauffer, and P. Furst, Protein isoaspartyl methyltransferase protects from Bax-induced apoptosis, Gene 240(2), 333–341 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. M. B. Youdim, A. Gross, and J. P. Finberg, Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B, Br. J. Pharmacol. 132(2), 500–506 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. D. Haberle, K. Magyar, and E. Szoko, Determination of the norepinephrine level by high-performance liquid chromatography to assess the protective effect of MAO-B inhibitors against DSP-4 toxicity, J. Chromatogr. Sci. 40(9), 495–499 (2002).

    PubMed  CAS  Google Scholar 

  24. W. Maruyama, T. Yamamoto, K. Kitani, M. C. Carrillo, M. B. Youdim and M. Naoi, Mechanism underlying anti-apoptotic activity of a (-)deprenyl-related propargylamine, rasagiline, Mech. Aging Dev. 116(2-3), 181–191 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. W. Maruyama, Y. Akao, M. B. Youdim, and M. Naoi, Neurotoxins induce apoptosis in dopamine neurons; protection by N-propargylamine-l-(R)-and (S)-aminoindan, rasagiline and TV1022, J. Neural Transm. 60(Suppl), 171–186 (2000).

    Google Scholar 

  26. W. Maruyama, Y. Akao, M. C. Carrillo, K. Kitani, M. B. Youdim, and M. Naoi, Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes, Neurotoxicol. Teratol. 24(5), 675–682 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. W. Maruyama, T. Takahashi, M. B. Youdim, and M. Naoi, The anti-Parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells, J. Neural Transm. 109(4), 467–481 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Akao, W. Maruyama, S. Shimizu, H. Yi, Y. Nakagawa, M. Shamoto-Nagai, M. B. Youdim, Y. Tsujimoto, and M. Naoi, Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan, J. Neurochem. 82(4), 913–923 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. J. P. Finberg, and M. B. Youdim, Pharmacological properties of the anti-Parkinson drug rasagiline; modification of endogenous brain amines, reserpine reversal, serotonergic and dopaminergic behaviours, Neuropharmacology 43(7), 1110–1118 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Rabey, I. Sagi, M. Huberman, E. Melamed, A. Korczyn, N. Giladi, R. Inzelberg, R. Djaldetti, C. Klein, and G. Berecz, The Rasagiline Study Group, Rasagiline mesylate, a new MAO-B inhibitor, for the treatment of Parkinson’s disease: a double blind study as adjunctive therapy to levodopa, Clin. Neuropharmacol. 23(6), 324–330 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. Parkinson Study Group, A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study, Arch. Neurol. 59(12), 1937–1943 (2002).

    Article  Google Scholar 

  32. J. Sterling, Y. Herzig, T. Goren, N. Finkelstein, D. Lerner, W. Goldenberg, I. Miskolczi, S. Molnar, F. Rantal, T. Tamas, G. Toth, A. Zagyva, A. Zekany, G. Lavian, A. Gross, R. Friedman, M. Razin, W. Huang, B. Krais, M. Chorev, M. B. Youdim, and M. Weinstock, Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J. Med. Chem. 45(24), 5260–5279 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. M. Weinstock, N. Kirschbaum-Slager, P. Lazarovici, C. Bejar, M. B. Youdim and S. Shoham, Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drug, in: Neuroprotective Agents, Ann. N. Y. Acad. Sci. U. S. A. vol. 939, edited by W. Slikker Jr., and B. Trembly (N. Y. Acad. Sci., New York, 2001) pp. 148–161.

    Google Scholar 

  34. M. B. Youdim, and M. Weinstock, Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3)aminoindan-5-yl)-ethyl methyl carbamate], Cell. Mol. Neurobiol. 21(6), 555–573 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. M. B. Youdim, and M. Weinstock, Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline, Mech. Ageing Dev. 123(8), 1081–1086 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. M. Yogev-Falach, T. Amit, O. Bar-Am, M. Weinstock, and M. B. Youdim, Involvement of MAP kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline, FASEB J. 16(12), 1674–1676 (2002).

    PubMed  CAS  Google Scholar 

  37. Parkinson Study Group, Pramipexole vs L-DOPA as initial treatment for Parkinson disease: a randomized controlled trial, JAMA 284(15), 1931–1938 (2000).

    Article  Google Scholar 

  38. A. Lieberman, A. Ranhosky, and D. Korts, Clinical evaluation of pramipexole in advanced Parkinson’s disease: results of a double-blind, placebo-controlled, parallel-group study, Neurology 49(1), 162–168 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. H. Allain, A. Destee, H. Petit, M. Patay, S. Schuck, D. Bentue-Ferrer, and P. Le Cavorzin, Five-year follow-up of early lisuride and L-DOPA combination therapy versus L-DOPA monotherapy in de novo Parkinson’s disease, The French Lisuride Study Group, Eur. Neurol. 44(1), 22–30 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. P. Barone, D. Bravi, F. Bermejo-Pareja, R. Marconi, J. Kulisevsky, S. Malagu, R. Weiser, and N. Rost, Pergolide monotherapy in the treatment of early PD: a randomized, controlled study, Neurology 53, 573–579(1999).

    Article  PubMed  CAS  Google Scholar 

  41. B. Bergamasco, L. Frattola, A. Muratorio, F. Piccoli, F. Mailland, and L. Parnetti, α-Dihydroergocryptine in the treatment of de novo parkinsonian patients: results of a multicentre, randomized, double-blind, placebo-controlled study, Acta Neurol. Scand. 101(6), 372–380 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. L. Battistin, P. G. Bardin, F. Ferro-Milone, C. Ravenna, V. Toso, and G. Reboldi, a-Dihydroergocryptine in Parkinson’s disease: a multicentre randomized double blind parallel group study, Acta Neurol. Scand. 99(1), 36–42 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. U. K. Rinne, F. Bracco, C. Chouza, E. Dupont, O. Gershanik, J. F. Marti-Masso, J. L. Montastruc, and C. D. Marsden, Early treatment of Parkinson’s disease with cabergoline delays the onset of motor complications, Results of a double-blind L-DOPA controlled trial, The PKDS009 Study Group, Drugs 55(Suppl 1), 23–30 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. A. Lledo, Dopamine agonists: the treatment for Parkinson’s disease in the XXI century? Parkinsonism Relat. Disord. 7(1), 51–58 (2000).

    Article  PubMed  Google Scholar 

  45. J. P. Bennett, and M. F. Piercey, Pramipexole-a new dopamine agonist for the treatment of Parkinson’s disease, J. Neurol. Sci. 163(1), 25–31 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. P. M. Carvey, S. O. McGuire, and Z. D. Ling, Neuroprotective effects of D3 dopamine receptor agonists, Parkinsonism & Related Disorders 7(3), 213–223 (2001).

    Article  Google Scholar 

  47. N. Ogawa, K. Tanaka, M. Asanuma, M. Kawai, T. Masumizu, M. Kohno, and A. Mori, Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicals in vitro, Brain Res. 657(1-2), 207–213 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. T. Yoshikawa, Y. Minamiyama, Y. Naito, and M. Kondo, Antioxidant properties of bromocriptine, a dopamine agonist, J. Neurochem. 62(3), 1034–1038 (1994).

    Article  PubMed  CAS  Google Scholar 

  49. A. Ubeda, C. Montesino, M. Paya, and M. J. Alcaraz, Iron-reducing and free-radical-scavenging properties of apomorphine and some related benzylisoquinolines. Free Radie. Biol. Med. 15(2), 159–167 (1993).

    Article  CAS  Google Scholar 

  50. E. E. Sam, and N. Verbeke, Free radical scavenging properties of apomorphine enantiomers and dopamine: possible implication in their mechanism of action in parkinsonism, J. Neural Transtn. Park Dis. Dement. Sect. 10(2-3), 115–127 (1995).

    Article  CAS  Google Scholar 

  51. M. Gassen, Y. Glinka, B. Pinchasi, and M. B. Youdim, Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction, Eur. J. Pharmacol. 308(2), 219–225 (1996).

    Article  PubMed  CAS  Google Scholar 

  52. M. Iida, I. Miyazaki, K.-I. Tanaka, H. Kabuto, E. Iwata-Ichikawa, and N. Ogawa, Dopamine D2 receptormediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist, Brain Res. 838(1-2), 51–59 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. T. Kihara, S. Shimohama, H. Sawada, K. Honda, T. Nakamizo, R. Kanki, H. Yamashita, and A. Akaike, Protective effect of dopamine D2 agonists in cortical neurons via the phosphatidylinositol 3 kinase cascade, J. Neurosci. Res. 70(3), 274–282 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. W. D. Le, and J. Jankovic, Are dopamine receptor agonists neuroprotective in Parkinson’s disease?, Drugs Aging 18(6), 389–396 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. S. Thobois, S. Guillouet, and E. Broussolle, Contributions of PET and SPECT to the understanding of the pathophysiology of Parkinson’s disease, Neuophysiol. Clin. 31(5), 321–340 (2001).

    Article  CAS  Google Scholar 

  56. K. Marek, β-CIT/SPECT assessments of progression of Parkinson’s disease in subjects participating in the CALM PD study, Neurology 54(Suppl 3), A90 (2000).

    Google Scholar 

  57. J. S. Rakshi, N. Pavese, T. Uema, K. Ito, P. K. Morrish, D. L. Bailey, and D. J. Brooks, A comparison of the progression of early Parkinson’s disease in patients started on ropinirole or L-dopa: an (18)F-DOPA PET study, J. Neural Transm. 109(12), 1433–1443 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. M. E. Götz, G. Künig, P. Riederer, and M. B. Youdim, Oxidative stress: Free radical production in neural degeneration, Pharmac. Ther. 63(1), 37–122 (1994).

    Article  Google Scholar 

  59. A. D. Mooradian, Antioxidant properties of steroids, J. Steroid Biochem. Mol. Biol. 45(6), 509–511 (1993).

    Article  PubMed  CAS  Google Scholar 

  60. B. Ruiz-Larrea, A. Leal, C. Martin, R. Martinez, and M. Lacort, Effects of estrogens on the redox chemistry of iron: A possible mechanism of the antioxidant action of estrogens, Steroids 60(11), 780–783 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. C. Behl, M. Widmann, T. Trapp, and F. Holsboer, 17β-estradiol protects neurons from oxidative stressinduced cell death in vitro, Biochem. Biophys. Res. Commun. 216(2), 473–482 (1995).

    Article  CAS  Google Scholar 

  62. C. Behl, T. Skutella, F. Lezoualc’h, A. Post, M. Widmann, C. J. Newton, and F. Holsboer, Neuroprotection against oxidative stress by estrogens: Structure-activity relationship, Mol. Pharm. 51(4), 535–541 (1997).

    CAS  Google Scholar 

  63. C. P. Miller, I. Jirkovsky, D. A. Hayhurst, and S. J. Adelman, In vitro antioxidant effects of estrogens with a hindered 3-OH function on the copper-induced oxidation of low density lipoprotein, Steroids 61(5), 305–308 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. J. N. Keller, A. Germeyer, J. G. Begley, and M. P. Mattson, 17β-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid β-peptide and iron, J. Neurosci. Res. 50(4), 522–530 (1997).

    Article  PubMed  CAS  Google Scholar 

  65. W. Röm er, M. Oettel, P. Droescher, and S. Schwarz, Novel “scavestrogens“ and their radical scavenging effects, iron-chelating, and total antioxidative activities: Δ8,9-dehydro derivatives of 17α-estradiol and 17β-estradiol, Steroids 62(3), 304–310 (1997).

    Article  PubMed  Google Scholar 

  66. D. Blum-Degen, M. Haas, S. Pohli, R. Harth, W. Röm er, M. Oettel, P. Riederer, M. E. Götz, Scavestrogens protect IMR 32 cells from oxidative stress — induced cell death, Toxicol. Appl. Pharmacol. 152(1), 49–55 (1998).

    Article  PubMed  CAS  Google Scholar 

  67. W. Röm er, M. Oettel, B. Menzenbach, P. Droescher, S. Schwarz, Novel estrogens and their radical scavenging effects, iron-chelating, and total antioxidative activities: 17α-substituted analogs of Δ9(11)-dehydro-17ß-estradiol, Steroids 62(11), 688–694 (1997).

    Article  PubMed  Google Scholar 

  68. C. Behl, Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17β-estradiol and induces the activity of the transcription factor NF-kappaB, J. Neural Transm. 107(4), 393–407 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. G.A. Fritsma, Vitamin E and autoxidation, Am. J. Med. Tech. 49(6) 453–456 (1983).

    CAS  Google Scholar 

  70. J.A. Lucy, Functional and structural aspects of biological membranes: a suggested role for vitamin E in the control of membrane permeability and stability. Ann. N. Y. Acad. Sci. 203, 4–11 (1972).

    Article  PubMed  CAS  Google Scholar 

  71. J. R. Burton, and K. U. Ingold, Autoxidation of biological molecules. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro, J. Am. Chem. Soc. 103, 6472–6477 (1981).

    Article  CAS  Google Scholar 

  72. C. K. Chow, Vitamin E and oxidative stress, Free Radic. Biol. Med. 11(2), 215–232 (1991).

    Article  PubMed  CAS  Google Scholar 

  73. A. Bjorneboe, G.-E. Bjorneboe, and C. A. Drevon, Absorption, transport and distribution of vitamin E, J. Nutr. 120(3), 233–242 (1989).

    Google Scholar 

  74. C. A. Drevon, Absorption, transport and metabolism of vitamin E, Free Radic. Res. Commun. 14(4), 229–246 (1991).

    Article  PubMed  CAS  Google Scholar 

  75. R. J. Sokol, Vitamin E and neurologic function in man, Free Radic. Biol. Med. 6(2), 189–207 (1989).

    Article  PubMed  CAS  Google Scholar 

  76. G. T. Vatassery, C. K. Angerhofer, and C. A. Knox, Effect of age on vitamin E concentrations in various regions of the brain and a few selected peripheral tissues of the rat, and on the uptake of radioactive vitamin E by various regions of the rat brain, J. Neurochem. 43(2), 409–412 (1984).

    Article  PubMed  CAS  Google Scholar 

  77. G. T. Vatassery, Selected aspects of the neurochemistry of vitamin E, in: Clinical and nutritional aspects of vitamin E, edited by, O. Hayaishi, and M. Mino, (Elsevier, Amsterdam, 1987), pp. 147–155.

    Google Scholar 

  78. M. A. Goss-Sampson, C. J. McEvilly, and D. P. R. Muller, Longitudinal studies of the neurobiology of vitamin E and other antioxidant systems, and neurological function in the vitamin E deficient rat, J. Neurol. Sci. 87(1), 25–35 (1988).

    Article  PubMed  CAS  Google Scholar 

  79. E. Southam, P. K. Thomas, R. H. M. King, M. A. Goss-Sampson, and D. P. R. Muller, (1991) Experimental vitamin E deficiency in rats, morphological and functional evidence of abnormal axonal transport secondary to free radical damage, Brain 114(Pt 2), 915–936 (1991).

    Article  PubMed  Google Scholar 

  80. G. T. Vatassery, C. K. Angerhofer, C. A. Knox, and D. S. Deshmukh, Concentrations of vitamin E in various neuroanatomical regions and subcellular fractions, and the uptake of vitamin E by specific areas, of rat brain, Biochim. Biophys. Acta 792(2), 118–122 (1984).

    Article  PubMed  CAS  Google Scholar 

  81. D.A. Butterfield, T. Koppal, R. Subramaniam, and S. Yatin, Vitamin E as an antioxidant/free radical scavenger against amyloid β-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: insights into Alzheimer’s disease, Rev.Neurosci. 10(2), 141–149 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. S. M. Yatin, S., Varadaryjan, and D. A. Butterfield, Vitamin E prevents Alzheimer’s amyloid β-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production, J. Alzheimers Dis. 2(2), 123–131 (2000).

    PubMed  CAS  Google Scholar 

  83. Y. Li, L. Liu, S. W. Barger, R. E. Mrak, and W. S. Griffin, Vitamin E suppression of microglial activation is neuroprotective, J. Neurosci. Res. 66(2), 163–170 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. C. Behl, and B. Moosmann, Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds, Biol. Chem. 383(3-4), 521–536 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. M. Grundman, Vitamin E and Alzheimer disease: the basis for additional clinical trials, Am. J. Clin. Nutr. 71(2), 630S–636S (2000).

    PubMed  CAS  Google Scholar 

  86. D. Offen, I. Ziv, H. Sternin, E. Melamed, and A. Hochman, Prevention of dopamine-induced cell death by thiol antioxidant: possible implications for treatment of Parkinson’s disease, Exp. Neurol. 141(1), 32–39 (1996).

    Article  PubMed  CAS  Google Scholar 

  87. A. Roth, W. Schaffner, and C. Hertel, Phytoestrogen kaempferol (3,4’,5,7-tetrahydroxyflavone) protects PC12 and T47D cells from β-amyloid-induced toxicity, J. Neurosci. Res. 57(3), 399–404 (1999).

    Article  PubMed  CAS  Google Scholar 

  88. M. S. Kobayashi, D. Han, and L. Packer, Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity, Free Radic. Res. 32(2), 115–124 (2000).

    Article  PubMed  CAS  Google Scholar 

  89. L. Iacovitti, N. D. Stull, and A. Mishizen, Neurotransmitters, KC1 and antioxidants rescue striatal neurons from apoptotic cell death in culture, Brain Res. 816(2), 276–285 (1999).

    Article  PubMed  CAS  Google Scholar 

  90. E. J. Lien, S. Ren, H.-H. Bui, and R. Wang, Quantitative structure-activity relationship analysis of phenolic antioxidants, Free Radic. Biol. Med. 26(3/4), 285–294 (1999).

    Article  PubMed  CAS  Google Scholar 

  91. H. Padh, Vitamin C: Newer insights into its biochemical functions, Nutr. Rev. 49(3), 65–70 (1991).

    Article  PubMed  CAS  Google Scholar 

  92. B. H. J. Bielski, and H. W. Richter, Some properties of the ascorbate free radical. Ann. N.Y. Acad. Sci. 258, 231–237 (1975).

    Article  PubMed  CAS  Google Scholar 

  93. R. L. Levine, Oxidative modification of glutamine synthetase: characterization of the ascorbate model system, J. Biol. Chem. 258(19), 11828–11833 (1983).

    PubMed  CAS  Google Scholar 

  94. D. W. Choi, Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemie damage, Trends Neurosci. 11(10), 465–469 (1988).

    Article  PubMed  CAS  Google Scholar 

  95. D. W. Choi, Glutamate neurotoxicity and diseases of the nervous system, Neuron 1(8), 623–634 (1988).

    Article  PubMed  CAS  Google Scholar 

  96. P. B. McCay, Vitamin E: nteractions with free radicals and ascorbate, Ann. Rev. Nutr. 5, 323–340 (1985).

    Article  CAS  Google Scholar 

  97. E. Niki, Antioxidants in relation to lipid peroxidation, Chem. Phys. Lipids 44(2-4), 227–253 (1987).

    Article  PubMed  CAS  Google Scholar 

  98. E. Niki, Interaction of ascorbate and a-tocopherol, Ann. N.Y. Acad. Sci. 498, 186–199 (1987).

    Article  PubMed  CAS  Google Scholar 

  99. J. E. Packer, T. F. Slater, and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C, Nature. Lond. 278(5706), 737–738 (1979).

    Article  PubMed  CAS  Google Scholar 

  100. M. Scarpa, A. Rigo, M. Maiorino, F. Ursini, and C. Gregolin, Formation of α-tocopherol radical and recycling of a-tocopherol by ascorbate during peroxidation of phosphatidylcholine liposomes. An electron paramagnetic resonance study, Biochim. Biophys. Acta 801(2), 215–219 (1984).

    Article  PubMed  CAS  Google Scholar 

  101. F. Hruba, V. Novakova, and E. Ginter, The effect of chronic marginal vitamin C deficiency on the α-tocopherol content of the organs and plasma of guinea pigs, Experientia 38(12), 1454–1455 (1982).

    Article  PubMed  CAS  Google Scholar 

  102. A. Bendich, L. J. Machlin, O. Scandurra, G. W. Burton, and D. N. Wayner, The antioxidant role of vitamin C, Adv. Free Radic. Biol. Med. 2, 419–444 (1986).

    Article  CAS  Google Scholar 

  103. J. Huang, D. B. Agus, C. J. Winfree, S. Kiss, W. J. Mack, R. A. McTaggart, T. F. Choudhri, L. J. Kim, J. Mocco, D. J. Pinsky, W. D. Fox, R. J. Israel, T. A. Boyd, D. W. Golde, and E. S. Connolly Jr., Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke, Proc. Natl. Acad. Sci. U. S. A. 98(20), 11720–11724 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. F. Fornai, S. Piaggi, M. Gesi, M. Saviozzi, P. Lenzi, A. Paparelli, and A. F. Casini, Subcellular localization of a glutathione-dependent dehydroascorbate reductase within specific rat brain regions, Neuroscience 104(1), 15–31 (2001).

    Article  PubMed  CAS  Google Scholar 

  105. M. Maden, Heads or tails? Retinoic acid will decide, Bioessays 21(10), 809–812 (1999).

    Article  PubMed  CAS  Google Scholar 

  106. G. Begemann, and A. Meyer, Hindbrain patterning revisited: timing and effects of retinoic acid signalling, Bioessays 23(11), 981–986 (2001).

    Article  PubMed  CAS  Google Scholar 

  107. G. Wolf, Vitamin A functions in the regulation of the dopaminergic system in the brain and pituitary gland, Nutr. Rev. 56(12), 354–355 (1998).

    Article  PubMed  CAS  Google Scholar 

  108. B. Ahlemeyer, R. Huhne, and J. Krieglstein, Retinoic acid potentiated the protective effect of NGF against staurosporine-induced apoptosis in cultured chick neurons by increasing the trk A protein expression, J. Neurosci. Res. 60(6), 767–778 (2000).

    Article  PubMed  CAS  Google Scholar 

  109. S. T. Omaye, Safety of megavitamin therapy, Adv. Exp. Med. Biol. 177, 169–203 (1984).

    PubMed  CAS  Google Scholar 

  110. M. R. McCall, and B. Frei, Can antioxidant vitamins materially reduce damage in humans? Free Radic. Biol. Med. 26(7/8), 1034–1053 (1999).

    Article  PubMed  CAS  Google Scholar 

  111. R. E. Beyer, The participation of CoQ10 in free radical production and antioxidation, Free Radic. Biol. Med. 8(6), 545–565 (1990).

    Article  PubMed  CAS  Google Scholar 

  112. F. L. Crane, Development of concepts for the role of ubiquinones in biological membranes, in: Highlights in Ubiquinone Research, edited by G. Lenaz, O. Barnabei, A. Rabbi, M. Battino (Taylor & Francis, London, 1990) pp. 3–17.

    Google Scholar 

  113. T. Takahashi, T. Okamoto, K. Mori, H. Sayo, and T. Kishi, Distribution of ubiquinone and ubiquinol homologues in rat tissues and subcellular fractions, Lipids 28(9), 803–809 (1993).

    Article  PubMed  CAS  Google Scholar 

  114. L. Ernster, P. Forsmark, and K. Nordenbrand, The mode of action of lipid-soluble antioxidants in biological membranes: Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles, BioFactors 3(4), 241–248 (1992).

    PubMed  CAS  Google Scholar 

  115. F. Aberg, E. L. Appelkvist, G. Dallner, and L. Ernster, Distribution and redox state of ubiquinones in rat and human tissues, Arch. Biochem. Biophys. 295(2), 230–234 (1992).

    Article  PubMed  CAS  Google Scholar 

  116. M. E. Götz, A. Dirr, W. Gsell, R. Burger, B. Janetzky, A. Freyberger, H. Reichmann, W.-D. Rausch, and P. Riederer, Influence of N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine, lipoic acid, and L-deprenyl on the interplay between cellular redox systems, J. Neural Transm. 43 (Suppl.), 145–162 (1994).

    Google Scholar 

  117. C. W. Shults, R.H. Haas, D. Passov, and F. Beal, Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects, Ann. Neurol. 42(2), 261–264 (1997).

    Article  PubMed  CAS  Google Scholar 

  118. J. P. Sheehan, R.H. Swerdlow, W.D. Parker, S.W. Miller, R.E. Davis, and J. B. Tuttle, Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson’s disease, J. Neurochem. 68(3), 1221–1233 (1997).

    Article  PubMed  CAS  Google Scholar 

  119. M. E. Götz, A. Dirr, R. Burger, B. Janetzky, M. Weinmül ler, W. W. Chan, S. C. Chen, H. Reichmann, W.-D. Rausch, and P. Riederer, Effect of lipoic acid on redox state of coenzyme Q in mice treated with 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine and diethyldithiocarbamate, Eur. J. Pharmacol. Mol. Pharmacol. Sect. 266(3), 291–300 (1994).

    Article  Google Scholar 

  120. M. F. Beal, D. R. Henshaw, B. G. Jenkins, B. R. Rosen, and J. B. Schulz, Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate, Ann. Neurol. 36(6), 882–888 (1994).

    Article  PubMed  CAS  Google Scholar 

  121. J. B. Schulz, D. R. Henshaw, R. T. Matthews, and M. F. Beal, Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity, Exp. Neurol. 132(2), 279–283 (1995).

    Article  PubMed  CAS  Google Scholar 

  122. R. T. Matthews, L. Yang, S. Browne, M. Baik, and M. F Beal, Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects, Proc. Natl. Acad. Sci. U.S.A. 95(15), 8892–8897 (1998).

    Article  PubMed  CAS  Google Scholar 

  123. J. Fallon, R. T. Matthews, B. T. Hyman, and M. F. Beal, MPP+ produces progressive neuronal degeneration which is mediated by oxidative stress, Exp. Neurol. 144(1), 193–198 (1997).

    Article  PubMed  CAS  Google Scholar 

  124. S. E. Stephans, T. S. Whittingham, A. J. Douglas, W. D. Lust, and B. K. Yamamoto, Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum, J. Neuochem. 71(2), 613–621 (1998).

    Article  CAS  Google Scholar 

  125. M. F. Beal, Coenzyme Q10 as a possible treatment for neurodegenerative diseases, Free Radic. Res. 36(4), 455–60 (2002).

    Article  PubMed  Google Scholar 

  126. R. J. Ferrante, O. A. Andreassen, A. Dedeoglu, K. L. Ferrante, B. G. Jenkins, S. M. Hersch, and M. F. Beal, Therapeutic effects of coenzyme Q10 and remacide in transgenic mouse models of Huntington’s disease, J. Neurosci. 22(5), 1592–1599 (2002).

    PubMed  CAS  Google Scholar 

  127. R. P. Ostrowski, Effect of coenzyme Q(10) on biochemical and morphological changes in experimental ischemia in the rat brain, Brain Res. Bull. 53(4), 399–407 (2000).

    Article  PubMed  CAS  Google Scholar 

  128. H. Li, G. Klein, P. Sun, and A. M. Buchan, CoQ10 fails to protect brain against focal and global ischemia in rats, Brain Res. 877(1), 7–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  129. M. E. Götz, A. Gerstner, R. Harth, A. Dirr, B. Janetzky, W. Kuhn, P. Riederer, and M. Gerlach, Altered redox state of platelet coenzyme Q10 in Parkinson’s disease, J. Neural Transm. 107, 41–48 (2000).

    Article  PubMed  Google Scholar 

  130. E. Strijks, H. P. Kremer, and M. W. Horstink, Q10 therapy in patients with idiopathic Parkinson’s disease, Mol. Aspects Med. 18(Suppl), S237–240 (1997).

    Article  PubMed  CAS  Google Scholar 

  131. K. Lonnrot, T. Metsa-Ketela, G. Molnar, J. P. Ahonen, M. Latvala, J. Peltola, T. Pietila, and H. Alho, The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity, Free Radic. Biol. Med. 21(2), 211–217 (1996).

    Article  PubMed  CAS  Google Scholar 

  132. L. Packer, H. J. Tritschler, and K. Wessel, Neuroprotection by the metabolic antioxidant α-lipoic acid, Free Radic. Biol. Med. 22(1-2), 359–378 (1997).

    Article  CAS  Google Scholar 

  133. A. Bast, and G. R. M. M. Haenen, Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation, Biochem. Biophys. Acta 963(3), 558–561 (1988).

    Article  PubMed  CAS  Google Scholar 

  134. H. Scholich, M. E. Murphy, and H. Sies, Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on α-tocopherol, Biochem. Biophys. Acta 1001(3), 256–261 (1989).

    Article  PubMed  CAS  Google Scholar 

  135. M. Panigrahi, Y. Sadguna, B. R. Shivakumar, S. V. Kolluri, S. Roy, L. Packer, and V. Ravindranath, α-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats, Brain Res. 717(1-2), 184–188 (1996).

    Article  PubMed  CAS  Google Scholar 

  136. P. Wolz, and J. Krieglstein, Neuroprotective effects of α-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology 35(3), 369–375 (1996).

    Article  PubMed  CAS  Google Scholar 

  137. N. Aguirre, M. Barrionuevo, M. J. Ramirez, J. Del Rio, and B. Lasheras, a-Lipoic acid prevents 3,4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity, Neuroreport 10(17), 3675–3680 (1999).

    Article  PubMed  CAS  Google Scholar 

  138. O. A. Andreassen, R. J. Ferrante, A. Dedeoglu, and M. F. Beal, Lipoic acid improves survival in transgenic mouse models of Huntington’s disease, Neuroreport 12(15), 3371–3373 (2001).

    Article  PubMed  CAS  Google Scholar 

  139. O. A. Andreassen, A. Dedeoglu, A. Friedlich, K. L. Ferrante, D. Hughes, C. Szabo, and M.F. Beal, Effects of an inhibitor of poly(ADP-ribose)polymerase, desmethylselegiline, trientine, and lipoic acid in transgenic ALS mice, Exp. Neurol. 168(2), 419–424 (2001).

    Article  PubMed  CAS  Google Scholar 

  140. M. F. McCarty, Versatile cytoprotective activity of lipoic acid may reflect its ability to activate signalling intermediates that trigger the heat-shock and phase II responses, Med. Hypotheses 57(3), 313–317 (2001).

    Article  PubMed  CAS  Google Scholar 

  141. L. Zhang, G. Q. Xing, J. L. Barker, Y. Chang, D. Maric, W. Ma, B. S. Li, and Rubinow, α-Lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway, Neurosci. Lett. 312(3), 125–128 (2001).

    Article  PubMed  CAS  Google Scholar 

  142. B. Drukarch, and F. L. van Muiswinkel, Neuroprotection for Parkinson’s disease: a new approach for a new millennium, Expert Opinion on Investigational Drugs 10(10), 1855–1868 (2001).

    Article  PubMed  CAS  Google Scholar 

  143. J. Flier, F. L. Van Muiswinkel, C. A. Jongenelen, and B. Drukarch, The neuroprotective antioxidant α-lipoic acid induces detoxication enzymes in cultured astroglial cells, Free Radic. Res. 36(6), 695–699 (2002).

    Article  PubMed  CAS  Google Scholar 

  144. K. Hager, A. Marahrens, M. Kenklies, P. Riederer, and G. Münch, α-Lipoic acid as a new treatment option for Alzheimer type dementia, Arch. Geronlol. Geriatr. 32(3), 275–282 (2001).

    Article  CAS  Google Scholar 

  145. J. C. Watkins, P. Krogsgaard-Larsen, and T. Honore’, Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists, in: Trends in Pharmacological Sciences, The Pharmacology of Excitatory Amino Acids, Special Report, edited by D. Lodge, and G. L. Collingridge, (Elsevier, Amsterdam, 1991). pp. 4–12.

    Google Scholar 

  146. D.T. Monaghan, R. J. Bridges, and C. W. Cotman, The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system, Ann. Rev. Pharmacol. Toxicol. 29, 365–402 (1989).

    Article  CAS  Google Scholar 

  147. M. DiFiglia, M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease, Trends Neurosci. 13(7), 286–289 (1990).

    Article  Google Scholar 

  148. M. H. M. Bakker, and A. C. Foster, An investigation of the mechanism of delayed neurodegeneration caused by direct injection of quinolinate into the rat striatum in vivo. Neuroscience 42(2), 387–395 (1991).

    Article  PubMed  CAS  Google Scholar 

  149. H. S. Chen, J. W. Pellegrini, S. K. Aggarwal, S. Z. Lei, S. Warach, F. E. Jensen, and S. A. Upton, Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12(11), 4427–4436 (1992).

    PubMed  CAS  Google Scholar 

  150. H. S. Lustig, K. V. Ahem and D. A. Greenberg, Antiparkinsonian drugs and in vitro excitotoxicity, Brain Res. 597(1), 148–150 (1992).

    Article  PubMed  CAS  Google Scholar 

  151. D. L. Small, and A. M. Buchan, NMDA antagonists: their role in neuroprotection, Int. Rev. Neurobiol. 40, 137–171 (1997).

    Article  PubMed  CAS  Google Scholar 

  152. W. Danielczyk, Therapy of akinetic crises, Med. Welt 24, 1278–1282 (1973).

    PubMed  CAS  Google Scholar 

  153. R. J. Uitti, A. H. Rajput, J. E. Ahlskog, K. P. Offord, D. R. Schroeder, M. M. Ho, M. Prasad, A. Rajput, and P. Basran, Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease, Neurology 46(6), 1551–1556 (1996).

    Article  PubMed  CAS  Google Scholar 

  154. R. J. Uitti, More recent lessons from amantadine, Neurology 52(3), 676 (1999).

    Article  PubMed  CAS  Google Scholar 

  155. K. L. R. Jansen, R. L. M. Faull, M. Dragunow, and B. L. Synek, Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensine, adenosine, benzodiazepine, serotonin and opioid receptors, an autoradiographic study. Neuroscience 39(3), 613–627 (1990).

    Article  PubMed  CAS  Google Scholar 

  156. J. W. Newcomer, and J. H. Krystal, NMDA receptor regulation of memory and behavior in humans, Hippocampus 11(5), 529–542 (2001).

    Article  PubMed  CAS  Google Scholar 

  157. K. A. Habemy, M. G. Paule, A. C. Scallet, F. D. Sistare, D. S. Lester, J. P. Hanig, and W. Slikker Jr., Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity, Toxicol. Sci. 68(1), 9–17 (2002).

    Article  Google Scholar 

  158. B. K. Siesjö, H. Memezawa, and M. L. Smith, Neurotoxicity: pharmacological implications, Fundam. Clin. Pharmacol. 5(9), 755–767 (1991).

    Article  PubMed  Google Scholar 

  159. G. G. C. Hwa, and M. Avoli, The involvement of excitatory amino acids in neocortical epileptogenesis: NMDA and non-NMDA receptors. Exp. Brain Res. 86(2), 248–256 (1991).

    Article  PubMed  CAS  Google Scholar 

  160. B. K. Kohl, and G. Dannhardt, The NMDA receptor complex: a promising target for novel antiepileptic strategies, Curr. Med Chem. 8(11), 1275–1289 (2001).

    PubMed  CAS  Google Scholar 

  161. K. Williams, Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action, Curr. Drug Targets 2(3), 285–298 (2001).

    Article  PubMed  CAS  Google Scholar 

  162. J. Ruel, M. J. Guitton, and J. L. Puell, Negative allosteric modulation of AMPA-preferring receptors by the selective isomer GYK1 53784 (LY303070), a specific non-competitive AMPA antagonist, CNS Drug Rev. 8(3), 235–254 (2002).

    Article  PubMed  CAS  Google Scholar 

  163. D. M. Turetsky, L. M. T. Canzoniero, and D. W. Choi, Kainate-induced toxicity in cultured neocortical neurons is reduced by the AMPA receptor selective antagonist SYM2206, Soc. Neurosci. Abstr. 24, 578 (1998).

    Google Scholar 

  164. J. Cartmell, and D. D. Schoepp, Regulation of neurotransmitter release by metabotropic glutamate receptors, J. Neurochem. 75(3), 889–907 (2000).

    Article  PubMed  CAS  Google Scholar 

  165. A. Stefani, A. Pisani, N. B. Mercuri, and P. Calabresi, The modulation of calcium currents by the activation of mGluRs, functional implications, Mol. Neurobiol. 13(1), 81–95 (1996).

    Article  PubMed  CAS  Google Scholar 

  166. V. Bruno, G. Battaglia, I. Ksiazek, H. van der Putten, M. V. Catania, R. Giuffrida, S. Lukic, T. Leonhardt, W. Inderbitzin, F. Gasparini, R. Kuhn, D. R. Hampson, F. Nicoletti, and P. J. Flor, Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J. Neurosci. 20(17), 6413–6420 (2000).

    PubMed  CAS  Google Scholar 

  167. J. R. Brorson, P. A. Manzolillo, and R. J. Miller, Calcium entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells, J. Neurosci. 14(1), 187–197 (1994).

    PubMed  CAS  Google Scholar 

  168. K. S. Lee, S. Frank, P. Vanderklish, A. Arai, and G. Lynch, Inhibition of proteolysis protects hippocampal neurons from ischemia, Proc. Natl. Acad. Sci. U. S. A. 88(16), 7233–7237 (1991).

    Article  PubMed  CAS  Google Scholar 

  169. C. G. Markgraf, N. L. Velajo, M. P. Johnson, D. R. McCarty, S. Medhi, J. R. Koehl, P. A. Chmielewski, and M. D. Linnik, Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29(1), 152–158 (1998).

    Article  PubMed  CAS  Google Scholar 

  170. M. Miyamoto, and J. T. Coyle, Idebenone atttenuates neuronal degeneration induced by intrastriatal injection of excitotoxins, Exp. Neurol. 108(1), 38–45 (1990).

    Article  PubMed  CAS  Google Scholar 

  171. H. Monyer, D. M. Hartley, and D. W. Choi, 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures, Neuron 5(2), 121–126 (1990).

    Article  PubMed  CAS  Google Scholar 

  172. J. S. Beckman, and W. H. Koppenol, Nitric oxide, Superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271(5 Pt 1), C1424–1437 (1996).

    PubMed  CAS  Google Scholar 

  173. L. L. Dugan, S. L. Sensi, L. M. Canzoniero, S. D. Handran, S. M. Rothman, T. S. Lin, M. P.Goldberg, and D. W. Choi, Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate, J. Neurosci. 15(10), 6377–6388 (1995).

    PubMed  CAS  Google Scholar 

  174. A. F. Schinder, E. C. Olson, N. C. Spitzer, and M. Montai, Mitochondrial dysfunction is a primary event in glutamate neurotoxicity, J. Neurosci. 16(19), 6125–6133 (1996).

    PubMed  CAS  Google Scholar 

  175. E. P. Wei, M. D. Ellison, H. A. Kontos, and J. T. Povlishock, O2 radicals in arachidonate-induced increased blood-brain barrier permeability to proteins, Am. J. Physiol. 251(4 Pt 2), H693–699 (1986).

    PubMed  CAS  Google Scholar 

  176. S. J. Hewett, T. F. Uliasz, A. S. Vidwans, and J. A. Hewett, Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture, J. Pharmacol. Exp. Ther. 293(3), 417–425 (2000).

    PubMed  CAS  Google Scholar 

  177. M. P. Mattson, Stabilizing calcium homeostasis, in: Handbook of Experimental Pharmacology, CNS Neuroprotection, edited by F. W. Marcoux, and D. W. Choi (Springer-Verlag, Berlin, New York, 2002), pp. 115–153.

    Google Scholar 

  178. J. W. Phillis, Neuroprotection by free radical scavengers and other antioxidants, in: Handbook of Experimental Pharmacology, CNS Neuroprotection, edited by F. W. Marcoux, and D. W. Choi (Springer-Verlag, Berlin, New York, 2002), pp. 245–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Götz, M.E., Riederer, P. (2004). Advances in Neuroprotection Research for Neurodegenerative Diseases. In: Vécsei, L. (eds) Frontiers in Clinical Neuroscience. Advances in Experimental Medicine and Biology, vol 541. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8969-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8969-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4740-8

  • Online ISBN: 978-1-4419-8969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics