Functional Optical Coherence Tomography

Conference paper
Part of the Topics in Biomedical Engineering International Book Series book series (ITBE)

Abstract

OCT is a recently developed imaging modality based on coherence-domainoptical technology. OCT takes advantage of the short coherence length of broadband light sources to perform micrometer-scale, cross-sectional imaging of biological tissue. It is similar to ultrasound and Doppler ultrasound. However, it uses near infrared optical waves instead of sound waves, and its advantages include non-contact and high spatial resolution. This paper reviews the principles of OCT and functional OCT. Recent advances in imaging speed, spatial resolution, velocity sensitivity, functional extensions, and clinical applications are discussed.

Keywords

Retina Coherence Psoriasis Cardiol Glaucoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouma, B. E., G. J. Tearney, C. C. Compton and N. S. Nishioka 2000. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography [see comments]. Gastrointestinal Endoscopy 51 (4 Pt 1): 467–74.CrossRefGoogle Scholar
  2. 2.
    Bouma, B. E., G. J. Tearney, B. Golubovic and J. G. Fujimoto (1996). Optical coherence tomographic imaging using a mode locked Crlsup 4+1:Forsterite laser source.Google Scholar
  3. 3.
    Brezinski, M. E., G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern and J. G. Fujimoto 1996. Optical Coherence Tomography For Optical Biopsy - Properties and Demonstration of Vascular Pathology. Circulation 93 (6): 1206–1213.CrossRefGoogle Scholar
  4. 4.
    Carson, P. L., D. D. Adler and J. B. Fowlkes 1992. Enhanced color flow imaging of breast cancer vasculature: continuous wave Doppler and three-dimensional display. J. Ultrasound Med 11: 77.Google Scholar
  5. 5.
    Chen, Z., T. E. Milner, D. Dave and J. S. Nelson 1997a. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22: 64–66.CrossRefGoogle Scholar
  6. 6.
    Chen, Z., T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert and J. S. Nelson 1997b. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22: 1119–21.CrossRefGoogle Scholar
  7. 7.
    Chen, Z., T. E. Milner, X. J. Wang, S. Srinivas and J. S. Nelson 1998. Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy. Photochem. Photobiol. 67: 56–60.CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash and R. D. Frostig 1999. Optical Doppler Tomography. IEEE J. of Selected Topics in Quantum Electronics 5(4): 1134–41.CrossRefGoogle Scholar
  9. 9.
    De Boer, J. F., T. E. Milner and J. S. Nelson 1999. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Optics Letters 24(5): 300–2.CrossRefGoogle Scholar
  10. 10.
    Boer, J. E, S. M. Srinivas, A. Malekafzali, Z. Chen and J. S. Nelson 1998a. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express. 3: 212.CrossRefGoogle Scholar
  11. Boer, J. F., S. M. Srinivas, A. Malekafzali, C. Zhongping and J. S. Nelson 1998b. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Optics Express 3(6).Google Scholar
  12. 12.
    de Boer, J. F., S. M. Srinivas, B. H. Park, T. H. Pham, C. Zhongping, T. E. Milner and J. S. Nelson 1999. Polarization effects in optical coherence tomography of various biological tissues. IEEE Journal of Selected Topics in Quantum Electronics 5(4): 1200–4.CrossRefGoogle Scholar
  13. 13.
    Ding, Z., Y. Zhao, H. Ren, S. J. Nelson and Z. Chen 2002. Real-time phase resolved optical coherence tomography and optical Doppler tomography. Optics Express 10: 236–45.CrossRefGoogle Scholar
  14. 14.
    Drexler, W., U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen and J. G. Fujimoto 1999. In vivo ultrahigh-resolution optical coherence tomography. Optics Letters 24(17): 1221–3.CrossRefGoogle Scholar
  15. 15.
    Ducros, M. G., J. F. De Boer, H. Huai-En Leah, J. S. Nelson, L. C. Chao, C. Zhongping, T. E. Milner and H. G. Rylander (1999). Polarization sensitive optical coherence tomography of the rabbit eye. Google Scholar
  16. 16.
    Feidchtein, F. L, G. V. Gelikonov, V. M. Gelikonov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Terent’eva, E. V. Zagainova, Y. P. Chumakov and I. A. Kuznetzova 1998. Endoscopic applications of optical coherence tomography. Optics Express 3(6).Google Scholar
  17. 17.
    Feldchtein, F. I., G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, Jr. and D. H. Reitze 1998a. In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express 3(6).Google Scholar
  18. 18.
    Feldchtein, F. L, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, I. A. Kuznetzova, A. N. Denisenko and O. S. Streltzova (1998b). Design and performance of an endoscopic OCT system for_in vivojtudies of human mucosa. Google Scholar
  19. 19.
    Fercher, A. F. 1996. Optical coherence tomography. J. of Biomedical Opt.1: 157–173.Google Scholar
  20. 20.
    Hartl, I., X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko and J. G. Fujimoto 2001. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26: 608–10.CrossRefGoogle Scholar
  21. 21.
    Hee, M. R., D. Huang, E. A. Swanson and J. G. Fujimoto 1992. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Amer. B9: 903–908.CrossRefGoogle Scholar
  22. 22.
    Huang, D., E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto 1991. Optical Coherence Tomography. Science 254 (5035): 1178–1181.CrossRefGoogle Scholar
  23. 23.
    Izatt, J. A., M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito and J. G. Fujimoto 1994. Micrometer-Scale Resolution Imaging Of The Anterior Eye In vivo With Optical Coherence Tomography. Archives Of Ophthalmology 112 (12): 1584–1589.CrossRefGoogle Scholar
  24. 24.
    Izatt, J. A., M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch 1997. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 22: 1439–41.CrossRefGoogle Scholar
  25. 25.
    Kulkarni, M. D. and J. A. Izatt (1996). Conference on Lasers and Electro Optics, Optical Society of America.Google Scholar
  26. 26.
    Kulkarni, M. D., T. G. van Leeuwen, S. Yazdanfar and J. A. Izatt 1998. Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. Opt. Lett. 23: 1057–59.CrossRefGoogle Scholar
  27. 27.
    Lee, M. R., J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schumun, C. P. Lin, C. A. Puliafito and J. G. Fujimoto 1995. Optical coherence tomography for ophthalmic imaging: new technique delivers micron-scale resolution. IEEE Engineering in Medicine and Biology Magazine 14(1): 67–76.CrossRefGoogle Scholar
  28. 28.
    Morgner, U., W. Drexler, X. D. Kartner, C. Piltris, E. P. Ippen and J. G. Fujimoto 2000. Spectroscopic optical coherence tomography. Opt. Lett. 25: 111–113.CrossRefGoogle Scholar
  29. 29.
    Nelson, J. S., K. M. Kelly, Y. Zhao and Z. Chen 2001. Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Archives of Dermatology 137 (6): 741–4.Google Scholar
  30. 30.
    Pitris, C, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern and J. G. Fujimoto 1996. High resolution imaging of the upper respiratory tract with optical coherence tomography. Amer. J. of Respiratory and Critical Care Medicine 157: 1640–4.CrossRefGoogle Scholar
  31. 31.
    Ren, H., K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson and Z. Chen 2002a. Imaging and quantifying transverse flow velocity using Doppler bandwidth in phase-resolved functional optical coherence tomography. Opt. Lett (27): 409–11.Google Scholar
  32. 32.
    Ren, H., Z. Ding, Y. Zhao, J. Miao, J. S. Nelson and Z. Chen 2002b. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and the Stokes vectors in human skin. Opt. Lett. 27: 1702–4.CrossRefGoogle Scholar
  33. 33.
    Rollins, A. M., R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr. and J. A. Izatt 1999. Real-time in vivo imaging of human gastrointestinal infrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Optics Letters 24(19): 1358–60.CrossRefGoogle Scholar
  34. 34.
    Roth, J. E., J. A. Kozak, S. Yazdanfar, A. M. Rollins and J. A. Izatt 2001. Simplified technique for polarization-sensitive optical coherence tomography. Opt. Lett 26: 1969.CrossRefGoogle Scholar
  35. 35.
    Saxer, C. E., J. F. de Boer, B. Hyle Park, Z. Yonghua, C. Zhongping and J. S. Nelson 2000. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Optics Letters 25 (18): 1355–7.CrossRefGoogle Scholar
  36. 36.
    Schmitt, J. M, S. H. Xiang and K. M. Yung 1998. Differntial absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A15: 2288.CrossRefGoogle Scholar
  37. 37.
    Schmitt, J. M., M. J. Yadlowsky and R. F. Bonner 1995. Subsurface imaging of living skin with optical coherence tomography. Dermatology 191: 93–8.CrossRefGoogle Scholar
  38. 38.
    Schoenenberger, K., B. W. Colston, L. B. Maitland, D. Silva and M. J. Everett 1998. Mapping of birefringence and thermal damage in tisssue by use of polarization-sensitive optical coherence tomography. Applied Optics 37: 6026.CrossRefGoogle Scholar
  39. 39.
    Sergeev, A. M., V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Suopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov and O. S. Sfreltzova 1997. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Optics Express 1(13).Google Scholar
  40. 40.
    Shuliang, J., Y. Gang and L. V. Wang 2000. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Applied Optics 39(34): 6318–24.CrossRefGoogle Scholar
  41. 41.
    Shuliang, J. and L. V. Wang 2002. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Optics Letters 27(2): 101–3.Google Scholar
  42. 42.
    Tearney, G. J., B. E. Bouma and J. G. Fujimoto 1997a. High-speed phase-and group-delay scanning with a grating-based phase control delay line. Optics Letters 22(23): 1811–13.CrossRefGoogle Scholar
  43. 43.
    Tearney, G. J., M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitvis, J. F. Southern and J. G. Fujimoto 1997b. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321): 2037–9.CrossRefGoogle Scholar
  44. Wang, Y., Y. Zhao, J. S. Nelson, Z. Chen and R. Windeler 2003. Ultrahigh-resolution OCT using broadband continuum generation from a photonic crystal fiber. Opt. Lett.(28): 182.Google Scholar
  45. 45.
    Westphal, V., S. Yazdanfar, A. M. Rollins and J. A. Izatt 2002. Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett 27: 34–7.CrossRefGoogle Scholar
  46. 46.
    Yamada, E., M. Matsumura, S. Kyo and R. Omoto 1995. Usefulness of a prototype intravascular ultrasound imaging in evaluation of aortic dissection and comparison with angiographic study, transesophageal echocardiography, computed tomography, and magnetic resonance imaging. Am. J. Cardiol. 75: 161–165.CrossRefGoogle Scholar
  47. 47.
    Yang, X. D., M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson and I. A. Vitkin 2002. Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmenttion. Optics Communications 208: 209–14.CrossRefGoogle Scholar
  48. 48.
    Yazdanfar, S., M. D. Kulkarni and J. A. Izatt 1997. High resolution imaging of in vivo cardiac dynamics using color Doppler. Optics Express 1: 424.CrossRefGoogle Scholar
  49. 49.
    Zhao, Y, Z. Chen, Z. Ding, H. Ren and J. S. Nelson 2001. Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J. of Selected Topics in Quantum Electronics 7: 931–5.CrossRefGoogle Scholar
  50. 50.
    Zhao, Y., Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer and J. S. Nelson 2000a. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25: 1358–60.CrossRefGoogle Scholar
  51. 51.
    Zhao, Y., Z. Chen, C. Saxer, S. Xiang, J. F. de Boer and J. S. Nelson 2000b. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high veocity sensitivity. Opt. Letts 25(2): 114.CrossRefGoogle Scholar
  52. 52.
    Zhao, Y., Z. Ding, H. Ren, J. S. Nelson and Z. Chen 2002. Real-time Phase-resolved Functional Optical Coherence Tomography Using Optical Hilbert Transformation. Opt. Lett 27: 98–100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Beckman Laser InstituteUniversity of California-IrvineIrvine

Personalised recommendations