The Glutamatergic System in Alzheimer’s Disease Brain: Dysfunction Associated with Amyloid β-Peptide and Oxidative Stress

  • D. Allan Butterfield


Excitotoxic mechanisms of neuronal death can occur in the presence of excess glutamate. Hence, means to remove or convert extra-neuronal glutamate exist in brain. However, in Alzheimer’s disease (AD) brain, the glutamate transporter and glutamine synthestase function with considerably reduced activity. Consistent with the observed oxidative stress in AD brain and the oxidative stress induced by amyloid β-peptide (Aβ), both the glutamate transporter (EAAT2) and glutamine synthetase are oxidatively modified in AD brain. Moreover, Aβ causes EAAT2 and glutamine synthetase to be oxidized, consistent with the notion that excess Aβ in AD brain contributes to the oxidative stress observed. This chapter reviews studies that support the notion that the dysfunctional glutamatergic system in AD brain results from oxidative modifications of key components of this system, and that Aβ plays a role in this oxidative modification. Consequent excitotoxicity could be one means to account for neuronal and synapse loss in AD brain.


glutamate oxidative stress HNE lipid peroxidation amyloid β-peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksenov M.Y., Aksenova M.V., Harris M.E., Hensley K., Butterfield D.A., Carney J.M. Enhancement of Aβ(1–40) neurotoxicity by glutamine synthetase. J. Neurochem. 1995; 65:1899–1902.PubMedCrossRefGoogle Scholar
  2. Aksenov M.Y., Aksenova M.Y., Carney J.M., Butterfield D.A. Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radical Res 1997; 27:267–281.CrossRefGoogle Scholar
  3. Anderson C.M., Swanson R.A. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 2000; 32:1–14.PubMedCrossRefGoogle Scholar
  4. Antuono P.G., Jones J.L., Wang Y., Li S J. Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with 1H-MRS at 0.5T. Neurology 2001; 56:737–742.PubMedCrossRefGoogle Scholar
  5. Blanc E.M., Keller J.N., Fernandez S. Mattson M.P. 4-Hydroxynonenal, a lipid peroxidation product, impairs glutamate transport in cortical astrocytes. Glia 1998; 22:149–60.PubMedCrossRefGoogle Scholar
  6. Boissiere F., Faucheux B., Duyckaerts C., Hauw J.J., Agid Y., Hirsch E.C. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. Neurochem 1998; 71:767–774.CrossRefGoogle Scholar
  7. Butterfield D.A. Beta-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 1997; 10: 495–506.PubMedCrossRefGoogle Scholar
  8. Butterfield D.A. Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A Review. Free Radical Res 2002; 36: 1307–1313.CrossRefGoogle Scholar
  9. Butterfield D.A., Stadtman E.R. Protein oxidation processes in aging brain. Adv. Cell Aging Gerontol 1997; 2:161–191.CrossRefGoogle Scholar
  10. Butterfield D.A., Lauderback C.M. Lipid peroxidation and protein oxidation in Alzheimer’s Disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radical Biol. & Med 2002; 32:1050–1060.CrossRefGoogle Scholar
  11. Butterfield D.A., Pocernich C.B. The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 2003; in press.Google Scholar
  12. Butterfield D.A., Hensley K., Harris M., Mattson M., Carney J. β-Amyloid peptide free radical fragments initiate synaptosomal Iipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun 1994; 200:710–715.PubMedCrossRefGoogle Scholar
  13. Butterfield D.A., Hensley K., Cole P. Subramaniam R., Aksenov M., Aksenova M., Bummer P.M., Haley B.E., Carney J.M., Oxidatively-induced structural alteration of glutamine synthetase assessed by analysis of spin labeled incorporation kinetics: relevance to Alzheimer’s disease. J. Neurochem 1997; 68:2451–2457.PubMedCrossRefGoogle Scholar
  14. Butterfield D.A., Drake J., Pocernich C., Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role of amyloid β-peptide. Trends Molecular Med 2001; 7:548–554.CrossRefGoogle Scholar
  15. Butterfield D.A., Castegna A., Lauderback C.M., Drake J. Review: Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contributes to neuronal death. Neurobiology of Aging 2002a; 23:655–664.PubMedCrossRefGoogle Scholar
  16. Butterfield D.A., Pocernich C.B., Drake J. Elevated gutathione as a therapeutic strategy in Alzheimer’s disease. Drug Discovery Research 2002b; 56:428–437.Google Scholar
  17. Butterfield D.A., Castegna A., Pocernich C.B., Drake J., Scapagnini G., Calabrese Y. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutritional Biochemistry 2002c: 13:444–461.CrossRefGoogle Scholar
  18. Castegna A., Aksenov M., Aksenova M. Thongboonkerd Y., Klein J.B., Pierce W.M., Booze R., Markesbery W.R., Butterfield D.A., Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biol. & Med 2002a; 33:562–571.CrossRefGoogle Scholar
  19. Castegna A., Aksenov M., Aksenova M., Thongboonkerd Y., Klein J.B., Pierce W.M., Booze R., Markesbery W.R., Butterfield D.A. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, ∀-enolase, and heat shock cognate 71. J. Neurochemistry 2002b; 82:1524–1532.CrossRefGoogle Scholar
  20. Collingridge G.L., Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 1990; 11:290–296.PubMedCrossRefGoogle Scholar
  21. Drake J., Link C.D., Butterfield D.A. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging 2003; in press.Google Scholar
  22. Ernst T., Chang L., Melchor R., Mehringer C.M. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 1997; 203:829–836.PubMedGoogle Scholar
  23. Furuta A., Rothstein J.D., Martin J.L. Glutamate transporter protein subtypes are expressed differentially during rat central nervous system development. J Neurosci 1997; 17:8363–8375.PubMedGoogle Scholar
  24. Gabbita S.P., Lovell M.A., Markesbery W.R. Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J. Neurochem. 1998; 71:2034–2040.PubMedCrossRefGoogle Scholar
  25. Gordon-Krajcer W., Salinska E., Lazarewicz J.W. N-methyl-D-aspartate receptor-mediated processing of beta-amyloid precursor protein in rat hippocampal slices: in vitro—superfusion study. Folia Neuropathol 2002; 40:13–17.PubMedGoogle Scholar
  26. Greenamyre J.T. The role of glutamate in neurotransmission and neurologic disease. Arch Neurol 1986; 43:1058–63.PubMedCrossRefGoogle Scholar
  27. Gunnersen, D., Haley B. Detection of glutamine synthetase in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic biochemical marker. Proc. Nat. Acad. Sci. USA 1992; 89:11949–11953.PubMedCrossRefGoogle Scholar
  28. Harris M.E., Hensley K., Butterfield D.A., Leedle R.A., Carney J.M. Direct evidence of oxidative injury produced by the Alzheimer’s amyloid beta peptide (1–40) in cultured hippocampal neurons. Exp. Neurol 1995; 131:193–202.PubMedCrossRefGoogle Scholar
  29. Haug L.S., Ostvold A.C., Cowburn R.F., Garlind A., Winblad B., Bogdanovich N., Walaas S.I. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration 1996; 5:169–176.PubMedCrossRefGoogle Scholar
  30. Hensley K., Hall N., Subramaniam R., Cole P., Harris M., Aksenov M., Aksenova M., Gabbita S.P., Wu J.F., Carney J.M., Lovell M., Markesbery W.R., Butterfield D.A. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem 1995; 65:2146–2156.PubMedCrossRefGoogle Scholar
  31. Hertz L., Drejer J., Schousboe A. Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 1988; 13:605–610.PubMedCrossRefGoogle Scholar
  32. Ikegaya Y., Matsuura S., Ueno S., Baba A., Yamada M.K., Nishiyama N., Matsuki N. Beta-amyloid enhances glial glutamate uptake activity and attenuates synaptic efficacy. J Biol Chem. 2002; 277:32180–6.PubMedCrossRefGoogle Scholar
  33. Katzman R., Saitoh T. Advances in Alzheimer’s disease. FASEB J. 1991; 5:278–86.PubMedGoogle Scholar
  34. Kowall N.W., Beal M.F. Glutamate-, glutaminase-, and taurine-immunoreactive neurons develop neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1991; 29:162–167.PubMedCrossRefGoogle Scholar
  35. Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993; 364:535–537.PubMedCrossRefGoogle Scholar
  36. Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., Morgan T.E., Rozovsky I., Trommer B., Viola K.L., Wals P., Zhang C., Finch C.E., Krall G.A., Klein W.L. Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 1998; 95:6448–53.PubMedCrossRefGoogle Scholar
  37. Lauderback C.M., Hackett J.M., Huang F.F., Keller J.N., Szweda L.I., Markesbery W.R., Butterfield D.A. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: Role of Aβ1-42. J. Neurochemistry 2001; 78:413–416.CrossRefGoogle Scholar
  38. Lievens, J.C., Bernal, F., Forni, C., Mahy, N., Kerkerian-Le Goff, L. Characterization of striatal lesions produced by glutamate uptake alteration: cell death, reactive gliosis, and changes in GLT1 and GADD45 mRNA expression. Glia 2000; 29:222–232.PubMedCrossRefGoogle Scholar
  39. Lovell M.A., Xie C., Markesbery W.R. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 2001; 22:187–94.PubMedCrossRefGoogle Scholar
  40. Maragakis N.J., Rothstein J.D. Glutamate transporters in neurologic disease. Arch Neurol. 2001; 58:365–70. Review.CrossRefGoogle Scholar
  41. Masliah E., Alford M., DeTeresa R., Mallory M., Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 1996; 40:759–66.PubMedCrossRefGoogle Scholar
  42. Masliah E., Alford M., Mallory M., Rockenstein E., Moechars D., Van Leuven F. Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp. Neurol 2000; 163:381–387.PubMedCrossRefGoogle Scholar
  43. Markesbery W.R. Oxidative stress hypothesis in Alzheimer disease. Free Radic Biol Med 1997; 23:134–47.PubMedCrossRefGoogle Scholar
  44. Markesbery W.R., Lovell M.A. 4-Hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 1998; 19:33–6.PubMedCrossRefGoogle Scholar
  45. Mattson M.P., Barger S.W., Cheng B., Lieberburg I., Smith-Swintosky V.L., Ryel R.E. β-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis Alzheimer’s disease. Trends Neurosci. 1993; 16:409–414.PubMedCrossRefGoogle Scholar
  46. Moats R.A., Ernst T., Shonk T.K., Ross B.D. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 1994; 32:110–115.PubMedCrossRefGoogle Scholar
  47. Oda T., Wals P., Osterburg H.H., Johnson S.A., Pasinetti G.M., Morgan T.E., Rozovsky I., Stine W.B., Snyder S.W., Holzman T.F., Krall G.A., Finch C.E. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 1995;136:22–31.PubMedCrossRefGoogle Scholar
  48. Pocernich C.B., La Fontaine M., Butterfield D.A. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int 2000 36:185–191.PubMedCrossRefGoogle Scholar
  49. Pocernich C.B., Cardin A.L., Racine C.L., Lauderback C.M., Butterfield D.A. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 2001; 39:141–149.PubMedCrossRefGoogle Scholar
  50. Robinson, M.B., Djali, S., Buchhalter, J.R. Inhibition of glutamate uptake with L-transpyrrolidine-2,4-dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. J. Neurochem 1993; 61:2099–2103.PubMedCrossRefGoogle Scholar
  51. Rothstein, J.D., Jin, L., Dykes-Hoberg, M., Kuncl, R.W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. 1993; 90:6591–6595.PubMedCrossRefGoogle Scholar
  52. Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., Bristol, L.A., Jin, L., Kuncl, R.W., Hediger, M.A., Wang, Y., Schielke, J.P., Welty, D.F. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16:675–686.PubMedCrossRefGoogle Scholar
  53. Scott H.L., Tannenberg A., Dodd P.R. Variant forms of neuronal glutamate transporter sites in Alzheimer’s disease cerebral cortex. J Neurochem 1995; 64:2193–2202.PubMedCrossRefGoogle Scholar
  54. Scott H.L., Pow D.V., Tannenberg A.E., Dodd P.R. Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease. J Neurosci. 2002; 22:RC206.PubMedGoogle Scholar
  55. Selkoe D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis. 2001; 3:75–80.PubMedGoogle Scholar
  56. Sheng M., Kim M.J. Postsynaptic signaling and plasticity mechanisms. Science 2002; 298:776–780.PubMedCrossRefGoogle Scholar
  57. Smith C.D., Carney J.M. Starke-Reed P.E., Oliver C.N., Stadtman E.R., Floyd R.A., Markesbery W.R. Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease. Proc. Natl. Acad. Sci. 1991; 88:10540–10543.PubMedCrossRefGoogle Scholar
  58. Smith M.A., Richey P.L., Taneda S., Kutty R.K., Sayre L.M., Monnier V.M., Perry G. Advanced Maillard react ion end products, free radicals, and protein oxidation in Alzheimer’s disease. Proc Natl Acad Sci 1994; 91:5710–4.PubMedCrossRefGoogle Scholar
  59. Smith M.A., Richey Harris P.L., Sayre L.M., Beckman J.S., Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 1997; 17:2653–7.PubMedGoogle Scholar
  60. Subramaniam R., Roediger F., Jordan B., Mattson M.P., Keller J.N., Waeg G., Butterfield D.A. The lipid peroxidation product, 4-Hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J. Neurochem 1997; 69: 1161–1169.PubMedCrossRefGoogle Scholar
  61. Thal D.R. Excitatory amino acid transporter EAAT-2 in tangle-bearing neurons in Alzheimer’s disease. Brain Pathol 2002; 12:405–11.CrossRefGoogle Scholar
  62. Varadarajan S., Yatin S., Aksenova M., Butterfield D.A. Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct Biol 2000 130:184–208.PubMedCrossRefGoogle Scholar
  63. Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002 416:535–9.PubMedCrossRefGoogle Scholar
  64. Yatin S.M., C. D. Link C.D., Butterfield D.A. In-vitro and in-vivo oxidative stress associated with Alzheimer’s amyloid β-peptide (1–42). Neurobiol of Aging 1999; 20:325–330.CrossRefGoogle Scholar
  65. Yatin S.M., Varadarajan S., Butterfield D.A. Vitamin E Prevents Alzheimer’s amyloid β-peptide (1–42)-induced protein oxidation and reactive oxygen species formation. Alzheimer’s Disease 2000; 2:123–131.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • D. Allan Butterfield
    • 1
  1. 1.Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA

Personalised recommendations