Skip to main content

The Evolution of Single- and Multiple-Ossicle Ears in Fishes and Tetrapods

  • Chapter
Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

The Ostariophysi are the hearing specialists of the ray-finned world. They are placed cladistically within the euteleosts and include the gonorynchiforms and a much larger group called the Otophysi (see Fig. 5.1 for a phylogeny of the taxa referred to in this chapter). The otophysans are distinguished by having some of the anterior neural arches and supraneurals modified into the “Weberian apparatus.” This system of interarticulating elements is intimately connected to the swim bladder, and forms a unique sound transmission system. Although lacking the Weberian apparatus, other euteleosts nonetheless have hearing capabilities, if not always as acute as those of the otophysans. Weberian ossicles, however, represent a hearing apparatus whose evolution can be traced in the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlberg PE, Clack JA, Luksevics E (1996) Rapid braincase evolution between Pander-ichthys and the earliest tetrapods. Nature 381:61–64.

    CAS  Google Scholar 

  • Allin EF (1975) Evolution of the mammalian middle ear. J Morph 147:403–437.

    PubMed  CAS  Google Scholar 

  • Allin EF (1986) The auditory apparatus of advanced mammal-like reptiles and early mammals. In: Hotton N III, MacLean PD, Roth JJ, Roth E (eds) The Ecology and Biology of Mammal-like Reptiles. Washington, DC: Smithsonian Institution Press, pp. 283–294.

    Google Scholar 

  • Allin EF (1999) Hearing and positional sense. In: Singer R (ed) Encyclopedia of Paleontology, vol 1. Chicago: Fitzroy Dearborn, pp. 554–561.

    Google Scholar 

  • Allin EF, Hopson JA (1992) Evolution of the auditory system in Synapsida (“mammal-like reptiles”) as seen in the fossil record. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 587–614.

    Google Scholar 

  • Barghusen HR (1968) The lower jaw of cynodonts (Reptilia, Therapsida) and the evolutionary origin of mammal-like adductor jaw musculature. Postilla 116:1–49.

    Google Scholar 

  • Barghusen HR (1986) On the evolutionary origin of the therian tensor veli palatini and tensor tympani muscles. In: Hotton N III, Mac Lean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Washington, DC: Smithsonian Institution Press, pp. 253–262.

    Google Scholar 

  • Beaumont EL, Smithson TR (1998) The cranial morphology and relationships of the aberrant Carboniferous amphibian Spathicephalus mirus Watson. Zool J Linn Soc 122: 187–209.

    Google Scholar 

  • Bolt JR, Lombard RE (1985) Evolution of the amphibian tympanic ear and the origin of frogs. Biol J Linn Soc 24:83–99.

    Google Scholar 

  • Caldwell MW (1999) Squamate phylogeny and the relationships of snakes and mosasaurs. Zool J Linn Soc 125:115–147.

    Google Scholar 

  • Caldwell MW, Lee MSY (1997) A snake with legs from the marine Cretaceous of the Middle East. Nature 386:705–709.

    CAS  Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:124–138.

    Google Scholar 

  • Carroll RL (1987) Vertebrate Paleontology and Evolution. New York: W.H. Freeman and Co.

    Google Scholar 

  • Carroll RL, Currie PJ (1975) Microsaurs as possible apodan ancestors. Zool J Linn Soc 57:229–247.

    Google Scholar 

  • Clack JA (1989) Discovery of the earliest-known tetrapod stapes. Nature 342:425–427.

    PubMed  CAS  Google Scholar 

  • Clack JA (1992) The stapes of Acanthostega gunnari and the role of the stapes in early tetrapods. In: Webster D, Fay R, Popper AN (eds) Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 405–420.

    Google Scholar 

  • Clack JA (1996) Otoliths in fossil coelacanths. J Vert Paleont 16:168–171.

    Google Scholar 

  • Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212.

    PubMed  CAS  Google Scholar 

  • Clack JA (1998) The neurocranium of Acanthostega gunnari and the evolution of the otic region in tetrapods. Zool J Linn Soc 122:61–97.

    Google Scholar 

  • Clack JA (2001) The otoccipital region-origin, ontogeny and the fish-tetrapod transition. In: Ahlberg PE (ed) Major Events in Early Vertebrate Evolution. London: Systematics Association Symposium Volume, pp. 392–505.

    Google Scholar 

  • Clack JA (2002a) An early tetrapod from Romer’s gap. Nature 418:72–76.

    PubMed  CAS  Google Scholar 

  • Clack JA (2002b) Gaining Ground: The Origin and Evolution of Tetrapods. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Clack JA (2002c) Patterns and processes in the early evolution of the tetrapod ear. J Neurobiol 53:251–264.

    PubMed  Google Scholar 

  • Clack JA (2003) A new baphetid (stem tetrapod) from the Upper Carboniferous of Tyne and Wear, UK, and the evolution of the tetrapod occiput. Can J Earth Sci 40:483–498.

    Google Scholar 

  • Clack JA, Ahlberg PE, Finney SM, Dominguez Alonso P, Robinson J, Ketcham RA (2003) A uniquely specialized ear in a very early tetrapod. Nature 425:65–69.

    PubMed  CAS  Google Scholar 

  • Crompton AW (1963) On the lower jaw of Diarthrognathus and the origin of the mammalian lower jaw. Proc Zool Soc Lond [B] 140:697–753.

    Google Scholar 

  • Crompton AW (1972) The evolution of the jaw articulation of cynodonts. In: Joysey KA, Kemp TS (eds) Studies in Vertebrate Evolution. Edinburgh: Oliver and Boyd, pp.231–251.

    Google Scholar 

  • Crompton AW (1994) Masticatory function in non-mammalian cynodonts and early mammals. In: Thomason JJ (ed) Functional Morphology in Vertebrate Paleontology. Cambridge: Cambridge University Press, pp. 55–75.

    Google Scholar 

  • OeBraga M, Rieppel O (1997) Reptile phylogeny and the interrelationship s of turtles. Zool J Linn Soc 120:281–354.

    Google Scholar 

  • Evans SE (1986) The braincase of Prolacerta broomi (Reptilia: Triassic). Neues Jahrb Geol Palaontol Abh 173:181–200.

    Google Scholar 

  • Evans SE (1987) The braincase of Youngina capensis (Reptilia: Diapsida; Permian). Neues Jahrb Geol Palaontol Mh 1987:193–203.

    Google Scholar 

  • Fox RC, Meng J (1997) An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and the evolution of hearing. Zool J Linn Soc 121:249–291.

    Google Scholar 

  • Fox RC, Youzwyshyn GP, Kraus OW (1992) A post-Jurassic mammal-like reptile from the Paleocene. Nature 358(6383):233–235.

    PubMed  CAS  Google Scholar 

  • Gaffney ES (1990) The comparative osteology of the Triassic turtle Proganochelys. Bull Am Mus Nat Hist 194:1–263.

    Google Scholar 

  • Gauldie RW, Dunlop D, Tse J (1986) The remarkable lungfish otolith. N Z J Mar Freshw Res 20:81–92.

    Google Scholar 

  • Geisler JH, Luo Z (1996) The petrosal and inner ear of Herpetocetus (Mammalia, Cetacea) and their implication for the phylogeny and hearing of archaic mysticetes. J Paleont 70:1045–1066.

    Google Scholar 

  • Godfrey SJ, Fiorillo AR, Carroll RL (1987) A newly discovered skull of the temnospondyl amphibian Dendrerpeton acadianum Owen. Can J Earth Sci 24:796–805.

    Google Scholar 

  • Goodrich ES (1930) Studies on the Structure and Development of Vertebrates. London: Macmillan.

    Google Scholar 

  • Gow CE (1975) The morphology and relationships of Youngina capensis Broom and Prolacerta broomi Parrington. Paleont Afr 18:89–131.

    Google Scholar 

  • Gower DJ, Weber E (1998) The braincase of Euparkeria, and the evolutionary relationships of birds and crocodiles. Cambridge University Press Biol Rev 73:367–412.

    Google Scholar 

  • Gower D, Wilkinson M (1996) Is there any consensus on basal archosaur phylogeny? Proc R Soc Lond [B] 263:1399–1406.

    Google Scholar 

  • Gregory WK (1951) Evolution Emerging. New York: Macmillan.

    Google Scholar 

  • Heaton MJ (1979) The cranial anatomy of primitive captorhinid reptiles from the Pennsylvanian and Permian of Oklahoma and Texas. Bull Okl Geol Surv 127:1–84.

    Google Scholar 

  • Hedges SB Poling L (1999) A molecular phylogeny of reptiles. Science 283:898–901.

    Google Scholar 

  • Heinrich W-D (1998) Late Jurassic mammals from Tendaguru, Tanzania, east Africa. J Mamm Evol 5(4):269–290.

    Google Scholar 

  • Hetherington TE, Jaslow AP, Lombard RE (1986) Comparative morphology of the amphibian opercularis system: 1. General design features and functional interpretation. J Morph 190:43–61.

    PubMed  CAS  Google Scholar 

  • Hopson JA (1966) The origin of the mammalian middle ear. Am Zool 6:437–450.

    PubMed  CAS  Google Scholar 

  • Hopson JA, Kitching JW (2001) A probainognathian cynodont from South Africa and the phylogeny of non-mammalian cynodonts. Bull Mus Comp Zool Harv 156:5–35.

    Google Scholar 

  • Hurum JH (1998) The inner ear of two Late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. J Mamm Evol 5:65–93.

    Google Scholar 

  • Hurum JH, Presley R, Kielan-Jaworowska Z (1996) The middle ear in multituberculate mammals. Acta Paleont Polon 41:253–275.

    Google Scholar 

  • Jarvik E (1980) Basic Structure and Evolution of Vertebrates, vols 1 and 2. New York: Academic Press.

    Google Scholar 

  • Kemp TS (1982) Mammal-Like Reptiles and the Origin of Mammals. London: Academic Press.

    Google Scholar 

  • Kermack KA (1983) The ear in mammal-like reptiles and early mammals. Acta Paleont 28:147–158.

    Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1981) The skull of Morganucodon. Zool J Linn Soc 71:1–158.

    Google Scholar 

  • Laurin M (1996) A redescription of the cranial anatomy of Seymouria baylorensis, the best known seymouriamorph (Vertebrata: Seymouriamorpha). Paleobios 17:1–16.

    Google Scholar 

  • Laurin M, Reisz RR (1995) A re-evaluation of early amniote phylogeny. Zool J Linn Soc 113:165–223.

    Google Scholar 

  • Laurin M, Reisz RR (1997) A new perspective on tetrapod phylogeny. In: Sumida S, Martin KLM (eds) Amniote Origins-Completing the Transition to Land. London: Academic Press, pp. 9–59.

    Google Scholar 

  • Lee MSY (1997a) Pareiasaur phylogeny and the origin of turtles. Zool J Linn Soc 120: 197–280.

    Google Scholar 

  • Lee MSY (1997b) The phylogeny of varanoid lizards and the affinities of snakes. Philos Trans R Soc Lond [B] 352:53–91.

    Google Scholar 

  • Luo Z-X (2001) Inner ear and its bony housing in tritylodonts and implications for evolution of the mammalian ear. Bull Mus Comp Zool Harv 156(1):81–97.

    Google Scholar 

  • Luo Z-X, Crompton AW (1994) Transformation of the quadrate (incus) through the transition from nonmammalian cynodonts to mammals. J Vert Paleont 14(3): 341–374.

    Google Scholar 

  • Luo Z-X, Gingerich PD (1999) Transition from terrestrial ungulates to aquatic whales: transformation of the braincase and evolution of hearing. Pap Paleont Mus Paleont Univ Mich 31:1–98.

    Google Scholar 

  • Luo Z-X, Marsh K (1996) Petrosal (periotic) and inner ear of a Pliocene Kogine whale (Kogiinae, Odontoceti): implications on relationships and hearing evolution in toothed whales. J Vert Paleont 16(2):328–348.

    Google Scholar 

  • Luo Z-X, Crompton AW, Lucas S (1995) Evolutionary origins of the mammalian promontorium and cochlea. J Vert Palaeont 15:113–121.

    Google Scholar 

  • Luo Z-X, Crompton AW, Sun A-L (2001a) A new mammaliaform from the Early Jurassic and evolution of mammalian characteri stics. Science 292:1535–1540.

    PubMed  CAS  Google Scholar 

  • Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001b) Dual origin of tribosphenic mammals. Nature 409:53–57.

    PubMed  CAS  Google Scholar 

  • Mallo M (2001) Formation of the middle ear: recent progress on the developmental and molecular mechanisms. Dev Biol 231:410–419.

    PubMed  CAS  Google Scholar 

  • Manley GA (2002) Evolution of structure and function of the hearing organ of lizards. J Neurobiol 53:202–211.

    PubMed  Google Scholar 

  • Manley G, Gleich O (1992) Evolution and specialisation of function in the avian auditory periphery. In: Webster D, Fay R, Popper AN (eds) Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 561–580.

    Google Scholar 

  • McKenna MC, Kielan-Jaworowska Z, Meng J (2000) Earliest eutherian mammal skull, from the Late Cretaceous (Coniacian) of Uzbekistan. Acta Paleont Polon 45(1):1–54.

    Google Scholar 

  • Meng J, Fox RC (1995a) Therian petrosals from the Oldman and Milk River Formation (Late Cretaceous), Alberta, Canada. J Vert Paleont 15:122–130.

    Google Scholar 

  • Meng J, Fox RC (1995b) Evolution of the inner ear from non-therians to therians during the Mesozoic: implications for mammalian phylogeny and hearing. In: Sun AL, Wang Y (eds) Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers. Beijing: China Ocean Press, pp. 235–242.

    Google Scholar 

  • Meng J, Fox RC (1995c) Osseous inner ear structures and hearing in early marsupials and placentals. Zool J Linn Soc 115:47–71.

    Google Scholar 

  • Meng J, Wyss AR (1995) Monotreme affinities and low frequency hearing suggested by the multituberculate ear. Nature 377:141–144.

    CAS  Google Scholar 

  • Miles RS (1977) Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. Zool J Linn Soc 61:1–328.

    Google Scholar 

  • Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Popper AN, Fay RR (eds) Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 463–488.

    Google Scholar 

  • Milner AR (1988) The relationships and origin of the living amphibians. In: Benton MJ (ed) The Phylogeny and Classification of the Tetrapods, vol 1. Oxford: Clarendon Press, pp. 59–102.

    Google Scholar 

  • Milner AR, Sequeira SEK (1994) The temnospondyl amphibians from the Visean of East Kirkton, West Lothian, Scotland. Trans R Soc Edinb Earth Sci 84:331–362.

    Google Scholar 

  • Novacek MJ (1993) Patterns of diversity in the mammalian skull. In: Hanken J, Hall BK (eds) The Skull, vol 2. Chicago: University of Chicago Press, pp.438–546.

    Google Scholar 

  • Oelschlager HA (1987) Pakicetus inachus and the origin of whales and dolphins (Mammalia, Cetacea). Gegenb Morphol Jahrb 133:673–685.

    CAS  Google Scholar 

  • Olson EC (1966) The relationships of Diadectes. Fieldiana Geol 14:199–227.

    Google Scholar 

  • Padian K, Chiappe LM (1998) The origin and early evolution of birds. Biol Rev 73:1–42.

    Google Scholar 

  • Parrington FR (1979) The evolution of the mammalian middle and outer ears: a personal review. Biol Rev 54:369–387.

    PubMed  CAS  Google Scholar 

  • Parrish JM (1993) Phylogeny of the Crocodylotarsi, with reference to archosaurian and crurotarsan monophyly, J Vert Paleont 13(3):287–308.

    Google Scholar 

  • Patterson C (1984) Chanoides, a marine Eocene otophysan fish (Teleostei: Ostariophysi). J Vert Paleont 4:430–456.

    Google Scholar 

  • Platt CJ (1994) Hair cells in the lagenar otolith organ of the coelacanth are unlike those in amphibians. J Morph 220:381.

    Google Scholar 

  • Popper AN, Platt C (1996) Sensory hair cell arrays in lungfish inner ears suggest retention of the primitive patterns for bony fishes. Soc Neurosci, vol 22, Washington, DC, abstracts, p. 1819.

    Google Scholar 

  • Presley R (1989) Ontogeny and the evolution of the mammalian jaw complex. In: Wake DB, Roth G (eds) Complex Organismal Function: Integration and Evolution in Vertebrates. New York: Wiley, pp. 53–61.

    Google Scholar 

  • Quiroga JC (1979) The inner ear of two cynodonts (Reptilia, Therapsida) and some comments on the evolution of the inner ear from pelycosaurs to mammals. Gegenb Morphol Jahrb 125:178–190.

    CAS  Google Scholar 

  • Rage J-C, Rocek Z (1989) Redescription of Triadobatrachus massinoti (Piveteau 1936) an anuran amphibian from the Early Jurassic. Palaeontographica 206:1–16.

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere. Morphologisch-histologische Studien. I. Das Gehörorgan der Fische und Amphibien. Stockholm, Sweden: Central-druckerei.

    Google Scholar 

  • Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, Klaveren N (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278:1438–1442.

    PubMed  CAS  Google Scholar 

  • Rieppel O, DeBraga M (1996) Turtles as diapsid reptiles. Nature 384:453–455.

    CAS  Google Scholar 

  • Romer AS (1937) The braincase of the Carboniferous crossopterygian Megalichthys nitidus. Bull Mus Comp Zool Harv 82:1–73.

    Google Scholar 

  • Romer AS, Price LI (1940) Review of the Pelycosauria, Geol Soc Am Spec Pap 28: 1–538.

    Google Scholar 

  • Rosowski JA (1992) Hearing in transitional mammals:predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: DB Webster, RR Fay, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 615–631.

    Google Scholar 

  • Rougier GW, Wible JR, Novacek MJ (1996) Middle-ear ossic1es of the multituberculate Kryptobaatar from the Mongolian Late Cretaceous: implications for mammaliamorph relationships and the evolution of the auditory apparatus. Am Mus Nat Hist Novit 3187:1–42.

    Google Scholar 

  • Rowe T (1988) Definition, diagnosis and origin of Mammalia. J Vert Paleont 8:241–264.

    Google Scholar 

  • Rowe T (1996) Coevolution of the mammalian middle ear and neocortex. Science 273: 651–654.

    PubMed  CAS  Google Scholar 

  • Sanchez-Villagra MR, Gemballa S, Nummela S, Smith KK, Maier W (2002) Ontogenetic and phylogenetic transformations of the ear ossic1es in marsupial mammals. J Morph 251(3):219–238.

    PubMed  Google Scholar 

  • Sereno P (1991) Lesothosaurus, “fabrosaurids” and the early evolution of Ornithisichia. J Vert Palaeont II:168–197.

    Google Scholar 

  • Shepherd CE (1914) On the location of the sacculus and its contained otoliths in fishes. Zoologist 4:103–109, 131–146.

    Google Scholar 

  • Shute CD (1956) The evolution of the mammalian eardrum and tympanic cavity. J Anat 90:261–281.

    PubMed  CAS  Google Scholar 

  • Smithson TR (1982) The cranial morphology of Greererpeton burkemorani (Amphibia: Temnospondyli). Zool J Linn Soc 76:29–90.

    Google Scholar 

  • Sues H-D (1986) The skull and dentition of two tritylodontid synapsids from the Lower Jurassic of western North America. Bull Mus Comp Zool Harv 151(4):217–268.

    Google Scholar 

  • Trueb L, Cloutier R (1991) A phylogenetic investigation of the inter-and intrarelation-ships of the Lissamphibia (Amphibia: Temnospondyli). In: Schulte H-P, Trueb L (eds) Origins of the Higher Groups of Tetrapods. Ithaca: Cornell University Press, pp. 223–314.

    Google Scholar 

  • Walker AD (1985) The braincase of Archaeopteryx. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The Beginnings of Birds. Eichstatt: Freunde des Jura-Museums, pp. 123–134.

    Google Scholar 

  • Walker AD (1990) A revision of Sphenosuchus acutus Haughton, a crocodylomorph reptile from the Elliot Formation (Late Triassic or Early Jurassic) of South Africa. Philos Trans R Soc Lond [B] 330:1–120.

    Google Scholar 

  • Wang Y, Hu Y, Meng J, Li C (2001) An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 294:357–361.

    PubMed  CAS  Google Scholar 

  • Watson DMS (1953) Evolution of the mammalian ear. Evolution 7:159–177.

    Google Scholar 

  • Weishampel DB (1981) Acoustic analysis of potential vocalisation in lambeosaurine dinosaurs. Paleobiology 7:252–261.

    Google Scholar 

  • Westoll TS (1945) The mammalian middle ear. Nature 155:114–115.

    Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton: Princeton University Press.

    Google Scholar 

  • White TE (1939) Osteology of Seymouria baylorensis Broili. Bull Mus Comp Zool Harv 85:325–409.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clack, J.A., Allin, E. (2004). The Evolution of Single- and Multiple-Ossicle Ears in Fishes and Tetrapods. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics