Skip to main content

The Evolution of Central Pathways and Their Neural Processing Patterns

  • Chapter
Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

A comprehensive and conclusive description of the evolution of the central auditory system in vertebrates is a difficult, if not impossible, task. We simply lack important basic information. For instance, we do not know how and what the common ancestors of all the terrestrial vertebrates could hear (certainly not airborne sound, because they had no tympanic middle ear) and how they might have processed basic sounds (such as substrate vibrations). However, a comparative approach allows us to define some principles of auditory processing that we find in all hearing vertebrates and a basic outline of its neural substrate. There is a striking similarity among all vertebrates concerning the principal design of the central auditory system. It. seems to result from the fact that all vertebrate central auditory systems are based on similar basic neural building blocks that work with similar underlying principles. These building blocks were then shaped by evolutionary constraints that were similar for all hearing vertebrates, simply because the acoustic cues that can be used for sound recognition or sound localizations are limited. However, an important issue in this chapter is the increasing evidence that the elaborated central auditory systems in the different clades of recent vertebrates are to a large extent a result of parallel, independent evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboitiz F, Morales D, Montiel J (2004) The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach. Behav Brain Sci 27 (in press).

    Google Scholar 

  • Akesson TR, de Lanerolle NC, Cheng MF (1987) Ascending vocalization pathways in the female ring dove: projections of the nucleus intercollicularis. Exp Neurol 95:34–43.

    Article  PubMed  CAS  Google Scholar 

  • Akutagawa E, Konishi M (2001). A monoclonal antibody specific to a song system nuclear antigen in estrildine finches. Neuron 31:545–556.

    Article  PubMed  CAS  Google Scholar 

  • Alder TB, Rose GJ (2000) Integration and recovery processes contribute to the temporal selectivity of neurons in the midbrain of the northern leopard frog, Rana pipiens. J Comp Physiol 186:923–937.

    Article  CAS  Google Scholar 

  • Arends J, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381.

    Article  PubMed  CAS  Google Scholar 

  • Barbas-Henry HA, Lohman AHM (1988) Primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus. J Comp Neurol 277:234–249.

    Article  PubMed  CAS  Google Scholar 

  • Bass AH, Bodnar DA, Marchaterre MA (2000) Midbrain acoustic circuitry in a vocalizing fish. J Comp Neurol 419:505–531.

    Article  PubMed  CAS  Google Scholar 

  • Bass AH, Bodnar DA, Marchaterre MA (2001) Acoustic nuclei in the medulla and mid-brain of the vocalizing Gulf toadfish (Opsanus beta). Brain Behav Evol 57:63–79.

    Article  PubMed  CAS  Google Scholar 

  • Beckius GE, Batra R, Oliver DL (1999) Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J Neurosci 19:3146–3161.

    PubMed  CAS  Google Scholar 

  • Belekhova MG, Zharskaja VD, Khachunts AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirnforsch 26:127–152.

    PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:452–466.

    Article  PubMed  CAS  Google Scholar 

  • Bodnar DA, Bass AH (1997) Temporal coding of concurrent acoustic signals in auditory midbrain. J Neurosci 17:7553–7564.

    PubMed  CAS  Google Scholar 

  • Bodnar DA, Holub AD, Land BR, Skovira J, Bass AH (2001) Temporal population code of concurrent vocal signals in the auditory midbrain. J Comp Physiol 187:865–873.

    Article  CAS  Google Scholar 

  • Boord RL, McCormick CA (1984) Central lateral line and auditory pathways: a phylogenetic perspective. Am Zool 24:765–774.

    Google Scholar 

  • Bottjer SW, Johnson F (1997) Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol 33:602–618.

    Article  PubMed  CAS  Google Scholar 

  • Brainard MS, Doupe AJ (2000) Auditory feedback in learning and maintenance of vocal behaviour. Nat Rev Neurosci 1:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Brand A, Urban R, Grothe B (2000) Duration tuning in the mouse auditory midbrain. J Neurophysiol 84:1790–1799.

    PubMed  CAS  Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547.

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz EA, Margoliash D, Nordeen KW (1997) An introduction to birdsong and the avian song system. J Neurobiol 33:495–500.

    Article  PubMed  CAS  Google Scholar 

  • Brigande JV, Kiernan AE, Gao X, Iten LE, Fekete DM (2000) Molecular genetics of pattern formation in the inner ear: do compartment boundaries playa role? Proc Natl Acad Sci USA 97:11700–11706.

    Article  PubMed  CAS  Google Scholar 

  • Browner RH, Rubinson K (1977) The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 176:539–557.

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. York: Wiley and Sons, pp. 637.

    Google Scholar 

  • Butler AB, Hodos W (1996) Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York: Wiley-Liss.

    Google Scholar 

  • Cant NB (1992) The cochlear nucleus: Neuronal types and their synaptic organization. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 66–116.

    Chapter  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474.

    Article  PubMed  Google Scholar 

  • Cantos R, Cole LK, Acampora D, Simeone A, Wu DK (2000) Patterning of the mammalian cochlea. Proc Natl Acad Sci USA 97:11707–11713.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE (1992) The evolution of the central auditory system in reptiles and birds. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 511–544.

    Chapter  Google Scholar 

  • Carr CE, Boudreau RE (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. York: Springer-Verlag, pp. 197–248.

    Chapter  Google Scholar 

  • Carr CE, Friedman MA (1999) Evolution of time coding systems. Neural Comput 11:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brain-stem. Proc Natl Acad Sci USA 85:8311–8315.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the bam owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Fujita I, Konishi M (1989) Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. j Comp Neurol 286:190–207.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11:727–733.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E (1996). A neuroethological theory of the operation of the inferior colliculus. Brain Behav Evol 47:311–336.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (2000) Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. J Neurophysiol 84:1475–1487.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Fremouw T, Covey E (2002) The inferior colliculus: a hub for the central auditory system. In: Oertel D, Fay RR, Popper AN (eds) Springer Handbook of Auditory Research: Integrative Functions in the Mamalian Auditory Pathway. York: Springer-Verlag, pp. 238–318.

    Google Scholar 

  • Cau ES, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Develop 129:1871–1880.

    CAS  Google Scholar 

  • Chen GD (1998) Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hear Res 122:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1999) Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci 22:128–135.

    Google Scholar 

  • Cohen YE, Miller GL, Knudsen EI (1998) Forebrain pathway for auditory space processing in the barn owl. J Neurophysiol 79:891–902.

    PubMed  CAS  Google Scholar 

  • Comer C, Grobstein P (1981) Organization of sensory inputs to the midbrain of the frog, Rana pipiens. J Comp Physiol 142:161–168.

    Article  Google Scholar 

  • Coombs S, Gömer P, Münz H (1989). The Mechanosensory Lateral Line: Neurobiology and Evolution. York: Springer-Verlag, pp. 724.

    Book  Google Scholar 

  • Crawford JD (1997) Feature-detecting auditory neurons in the brain of a sound-producing fish. J Comp Physiol 180:439–450.

    Article  CAS  Google Scholar 

  • Crawford JD, Cook AP, Heberlein AS (1997) Bioacoustic behavior of African fishes (Mormyridae): potential cues for species and individual recognition in Pollimyrus. J Acoust Soc Am 102:1200–1212.

    Article  PubMed  CAS  Google Scholar 

  • Crompton AW, Jenkins AF Jr (1979) Origin of Mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals. Berkeley: University of California Press, pp. 55–73.

    Google Scholar 

  • de Burlet HM (1934) Vergleichende Anatomie des statoakustischen Organs. a) Die innere Ohrsphäre. In: Bolkl, Göppert E, Kallius E, Lubosch W (eds) Handbuch der Verglei-chenden Anatornie der Wirbeltiere, vol 2. Berlin: Urban and Schwarzenberg, pp. 1293–1432.

    Google Scholar 

  • DeFina AV, Kennedy MC (1983) The cochlear nuclei in colubrid and boid snakes: a qualitative and quantitative study. J Morphol 178:285–301.

    Article  Google Scholar 

  • DeFina AV, Webster DB (1974) Projections of the intraotic ganglion to the medullary nuclei in the tegu lizard, Tupinambis nigropunctatus. Brain Behav Evol 10:197–211.

    Article  PubMed  CAS  Google Scholar 

  • de Rebaupierre F (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Ehret G, Romand R (eds) The Central Auditory System. York: Oxford University Press, pp. 317–398.

    Google Scholar 

  • Doucet JR, Ryugo DK (1997) Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. J Comp Neurol 385:245–264.

    Article  PubMed  CAS  Google Scholar 

  • Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631.

    Article  PubMed  CAS  Google Scholar 

  • Echteler SM (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol 156:267–280.

    Google Scholar 

  • Edds-Walton PL (1998) Projections of primary afferents from regions of the saccule in toadfish (Opsanus tau). Hear Res 115:45–60.

    Article  PubMed  CAS  Google Scholar 

  • Edds-Walton PL, Fay RR, Highstein SM (1999) Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the toadfish, Op-sanus tau. J Comp Neurol 411:212–238.

    Article  PubMed  CAS  Google Scholar 

  • Edwards CJ, Kelley DB (2001) Auditory and lateral line inputs to the midbrain of an aquatic anuran: neuroanatomic studies in Xenopus laevis. J Comp Neurol 438:148–162.

    Article  PubMed  CAS  Google Scholar 

  • Edwards CJ, Alder TB, Rose GJ (2002) Auditory midbrain neurons that count. Nat Neurosci 5:934–936.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich D, Casseday JH, Covey E (1997) Neural tuning to sound duration in the inferior collicuius of the big brown bat, Eptesicus fuscus. J Neurophysiol 77:2360–2372.

    PubMed  CAS  Google Scholar 

  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180.

    PubMed  CAS  Google Scholar 

  • Faure PA, Fremouw T, Casseday JH, Covey E (2003) Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. J Neurosci 23:3052–3065.

    PubMed  CAS  Google Scholar 

  • Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1982) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229:432–450.

    Article  Google Scholar 

  • Feng AS (1983) Morphology of neurons in the torus semicircularis of the northern leopard frog, Rana pipiens pipiens. J Morphol 175:253–269.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Capranica RR (1976) Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bullfrogs (Rana catesbeiana). J Neurophysiol 39:871–881.

    PubMed  CAS  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans. II. Binaural interaction in superior olivary nucleus of the green tree frog (Hyla cinerea). J Neurophysiol 41:43–54.

    PubMed  CAS  Google Scholar 

  • Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicircularis). J Comp Neurol 306:613–630.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Lin WY (1996) Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog, Rana pipiens pipiens. J Comp Neurol 366:320–334.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Schellart NAM (1999) Central auditory processing in fish and amphibians. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. York: Springer-Verlag, pp. 218–268.

    Chapter  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of green tree-frog (Hyla-Cinerea) and barking treefrog (Hyla-Gratiosa). J Comp Physiol 107:241–252.

    Article  Google Scholar 

  • Feng AS, Simmons JA, Kick SA (1978) Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus. Science 202:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20:1605–1615.

    PubMed  CAS  Google Scholar 

  • Fritzsch B (l988a) The amphibian octavo-lateralis system and its regressive and progressive evolution. Acta Biol Hung 39:305–322.

    Google Scholar 

  • Fritzsch B (l988b) Phylogenetic and ontogenetic origin of the dorsolateral auditory nucleus of anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. York: John Wiley, pp. 561–585.

    Google Scholar 

  • Fritzsch B (l990a) On the coincidence of loss of electroreception and reorganization of brain stem nuclei. In: Scheich H (ed) The Neocortex: Ontogeny and Phylogeny. York: Plenum Press, pp. 103–111.

    Google Scholar 

  • Fritzsch B (1990b) Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Brain Res Dev Brain Res 51:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (l999a) Hearing in two worlds: Theoretical and realistic adaptive changes of the aquatic and terrestrial ear for sound reception. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. York: Springer-Verlag, pp. 15–42.

    Google Scholar 

  • Fritzsch B (1999b) Ontogenetic and evolutionary evidence for the motoneuron nature of vestibular and cochlear efferents. In: Berlin CI (ed) The Efferent Auditory System: Basic Science and Clinical Applications. San Diego: Singular Publishing, pp. 31–59.

    Google Scholar 

  • Fritzsch B (2002) Evolution of the ancestral vertebrate brain. In: Arbib MA (ed) The Handbook of Brain Theory and Neural Networks. Cambridge: MIT Press, pp. 373–376.

    Google Scholar 

  • Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60:423–433.

    Article  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW (2001) Evolution and development of the vertebrate ear. Brain Res Bull 55:711–721.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Beisel KW (2003) Molecular conservation and novelties in vertebrate ear development. Cur Top Develop Biol 57:1–44.

    Article  CAS  Google Scholar 

  • Fritzsch B, Signore M, Simeone A (2001) Otxl null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev Genes Evol 211:388–396.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156.

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Oertel 0 (2001) Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci 21:7372–7383.

    PubMed  CAS  Google Scholar 

  • Funabiki K, Koyano K, Ohmori H (1998) The role of GABAergic inputs for coincidence detection in the neurone s of nucleus laminaris of the chick. J Physiol 508:851–869.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery ZM (1988) Frequency tuning in the anuran central auditory system. In: Fritzsch B, Wilczynski W, Ryan MJ, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. York: Wiley, pp. 253–273.

    Google Scholar 

  • Fuzessery ZM, Hall JC (1999) Sound duration selectivity in the pallid bat inferior colliculus. Hear Res 137:137–154.

    Article  PubMed  CAS  Google Scholar 

  • Glatt AF (l975a) Vergleichend morphologische Untersuchungen am akustischen System einiger ausgewählter Reptilien. A: Caiman crocodilus. Rev Suisse Zool 82:257–281.

    Google Scholar 

  • Glatt AF (l975b) Vergleichend morphologische Untersuchungen am akustischen System einiger ausgewählter Reptilien. B: Sauria, Testudines. Rev Suisse Zool 82:469–494.

    Google Scholar 

  • Gold JI, Knudsen EI (2000) A site of auditory experience-depen dent plasticity in the neural representation of auditory space in the barn owl’s inferior colliculus. J Neurosci 20:3469–3486.

    PubMed  CAS  Google Scholar 

  • Goodson JL, Bass AH (2002) Vocal-acoustic circuitry and descending vocal pathways in teleo st fish: convergence with terrestrial vertebrates reveals conserved traits. J Comp Neurol 448:298–322.

    Article  PubMed  Google Scholar 

  • Gooier OM, Feng AS (1992) Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol 67:1–22.

    Google Scholar 

  • Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Cross inhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31:219–232.

    Article  PubMed  CAS  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610.

    Article  PubMed  CAS  Google Scholar 

  • Grothe B (2003) Sensory systems: New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4:540–550.

    Article  PubMed  CAS  Google Scholar 

  • Grothe B, Neuweiler G (2000) The function of the medial superior olive in small mammals: temporal receptive fields in auditory analysis. J Comp Physiol [A] 186:413423.

    Google Scholar 

  • Grothe B, Sanes DH (1993) Bilateral inhibition by glycinergic afferents in the medial superior olive. J Neurophysiol 69:1192–1196.

    PubMed  CAS  Google Scholar 

  • Grothe B, Schweizer H, Pollak GO, Schuller G, Rosemann C (1994) Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana. J Comp Neurol 343:630–646.

    Article  PubMed  CAS  Google Scholar 

  • Grothe B, Covey E, Casseday JH (2001) The medial superior olive in the big brown bat: neuronal response to pure tones, amplitude modulations, and pulse train s. J Neurophysiol 86:2219–2230.

    PubMed  CAS  Google Scholar 

  • Hall JC (1999) GABAergic inhibition shapes frequency tuning and modifies response properties in the auditory midbrain of the leopard frog. J Comp Physiol [A] 85:479–491.

    Google Scholar 

  • Hall JC, Feng AS (1990) Classification of the temporal discharge patterns of single auditory neurons in the dorsal medullary nucleus of the northern leopard frog. J Neurophysiol 64:1460–1473.

    PubMed  CAS  Google Scholar 

  • Haplea S, Covey E, Casseday JH (1994) Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus. J Comp Physiol 174:671–683.

    Article  CAS  Google Scholar 

  • Harrison JM, Irving R (1966) Visual and nonvisual auditory systems in mammals. Anatomical evidence indicates two kinds of auditory pathways and suggests two kinds of hearing in mammals. Science 154:738–743.

    Article  PubMed  CAS  Google Scholar 

  • Herrick CJ (1948) The Brain of the Tiger Salamander, Ambystoma tigrinum. Chicago: University of Chicago Press.

    Google Scholar 

  • Hopson JA (1973) Endothermy, small size, and the origin of mammalian reproduction. Am Nature 107:446–452.

    Article  Google Scholar 

  • Hyson RL, Overholt EM, Lippe WR (1994) Cochlear microphonic measurements of interaural time differences in the chick. Hear Res 81:109-118.

    Google Scholar 

  • Hyson RL, Reyes AD, Rubel EW (1995) A depolarizing inhibitory response to GABA in brain stem auditory neurons of the chick. Brain Res 677:117–126.

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Adrian HO (1977) Binaural columns in the primary field (A 1) of cat auditory cortex. Brain Res 138:241–257.

    Article  PubMed  CAS  Google Scholar 

  • Inbody SB, Feng AS (1981) Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res 210:361–366.

    Article  PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Luo ZX, Yuan CX, Wible JR, Zhang JP, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822.

    Article  PubMed  CAS  Google Scholar 

  • Joris PX, Yin TC (1995) Envelope coding in the lateral superior olive. I. sensitivity to interaural time differences. J Neurophysiol 73:1043–1062.

    PubMed  CAS  Google Scholar 

  • Joseph AW, Hyson RL (1993) Coincidence detection by binaural neurons in the chick brain stem. J Neurophysiol 69:1197–1211.

    PubMed  CAS  Google Scholar 

  • Kaas JH, Hackett TA, Tramo MJ (1999) Auditory processing in primate cerebral cortex. Curr Opin Neurobiol 9:164–170.

    Article  PubMed  CAS  Google Scholar 

  • Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253.

    Article  PubMed  CAS  Google Scholar 

  • Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI, de Caprona D, Fritzsch B (2001) Tran scription factor GATA-3 alters pathway selection of olivocochlear neurons and affect s morphogenesis of the ear. J Comp Neurol 429:615–630.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ, Shimizu T (1989) The origins of neocortex: connections and lamination as distinct event s in evolution. J Cognit Neurosci 1:291–301.

    Article  Google Scholar 

  • Kelly IB, Judge PW (1994) Binaural organization of primary auditory cortex in the ferret (Mustela putorius). J Neurophysiol 71:904–913.

    PubMed  CAS  Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1981) The skull of Morganucodon. Zool J Linn Soc 71:1–185.

    Article  Google Scholar 

  • Klug A, Khan A, Burger RM, Bauer EE, Hurley LM, Yang L, Grothe B, Halvorsen MB, Park TJ (2000) Latency as a function of intensity in auditory neurons: influences of central processing. Hear Res 148:107–123.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM (2000) Sound localization in birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. York: Springer-Verlag, pp. 249–307.

    Chapter  Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain catfishes. J Comp Neurol 173:417–431.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1983) Subdivisions of the Inferior Collieulus in the Barn Owl (Tyro alba). J Comp Neurol 218:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen El, Konishi M (1978) A neural map of auditory space in the owl. Science 200:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1985) Birdsong: from behavior to neuron. Annu Rev Neurosci 8:125–170.

    Article  PubMed  CAS  Google Scholar 

  • Köppl C (1994) Auditory nerve terminal s in the cochlear nucleus magnocellularis: differences between low and high frequencies. J Comp Neurol 339:438–446.

    Article  PubMed  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321.

    PubMed  Google Scholar 

  • Köppl C, Carr CE (1997) Low-frequency pathway in the barn owl’s auditory brainstem. J Comp Neurol 378:265–282.

    Google Scholar 

  • Köppl C, Carr CE (2003) Computational diversity in the cochlear nucleus angularis of the barn owl. J Neurophysiol 89:2313–2329.

    Article  PubMed  Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 489–510.

    Chapter  Google Scholar 

  • Kössl M, Vater M (1985) The cochlear frequency map of the mustached bat, Pterouotus pamellii. J Coup Physiol [A] 157:687–987.

    Article  Google Scholar 

  • Kozloski J, Crawford IO (1998) Functional neuroanatomy of auditory pathways in the sound-producing fish Pollimyrus. J Comp Neurol 401:227–252.

    Article  PubMed  CAS  Google Scholar 

  • Krubitzer L, Künzle H, Kaas J (1997) Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). J Comp Neurol 379:399–414.

    Article  PubMed  CAS  Google Scholar 

  • Kubke MF, Carr CE, Dooling RJ (2002) Organization of nucleus laminaris in different species of birds. Assoc Res Otollaryngol Abstr 426.

    Google Scholar 

  • Kuhn GF (1977) Model for interaural time difference s in azimuthal plane. J Acoust Soc Am 62:157–167.

    Article  Google Scholar 

  • Künzle H (1986) Projection s from the cochlear nuclear complex to rhombencephalic auditory centers and torus semicircularis in the turtle. Brain Res 379:307–319.

    Article  PubMed  Google Scholar 

  • Künzle H, Woodson W (1982) Mesodiencephalic and other target regions of ascending spinal projections in the turtle, Pseudemys scripta elegans. J Comp Neurol 212:349–364.

    Article  PubMed  Google Scholar 

  • Lachica EA, Rubsamen R, Rubel EW (1994) GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. J Comp Neurol 348:403–418.

    Article  PubMed  CAS  Google Scholar 

  • Lanuza E, Martinez-Marcos A, Martinez-Garcia F (1999) What is the amygdala? A comparative approach. Trends Neurosci 22:207–208.

    Article  CAS  Google Scholar 

  • Larsell O (1967) The Comparative Anatomy and Histology of the Cerebellum from Myxinoids Through Birds. Hansen J (ed). Minneapolis: University of Minnesota Press, p. 291.

    Google Scholar 

  • Leake PA, Snyder RL, Hradek GT (2002) Postnatal refinement of auditory nerve projections to the cochlear nucleus in cats. J Comp Neurol 448:6–27.

    Article  PubMed  Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 101–154.

    Chapter  Google Scholar 

  • Liberman MC (1991) Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. J Comp Neurol 313:240–258.

    Article  PubMed  CAS  Google Scholar 

  • Liem KF, Bemis WE, Walker WF, Grande L (2001) Functional Anatomy of the Vertebrates-An Evolutionary Perspective. Orlando, FL: Hartcourt College.

    Google Scholar 

  • Lowe CJ, Wu M, Salic A, Evans L, Lander H, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the orig ins of the chordate nervous system. Cell 113:853–865.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Fay RR (1966) Tow-tone interaction in primary afferents and midbrain neurons of the goldfish, Carassius Auratus. Audit Neurosci 2:257–273.

    Google Scholar 

  • Lu Z, Fay RR (1995) Acoustic response properties of single neurons in the central posterior nucleus of the thalamus of the goldfish, Carassius auratus. J Comp Physiol [A] 176:747–760.

    CAS  Google Scholar 

  • Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Anderson OJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143.

    Article  PubMed  CAS  Google Scholar 

  • Maklad A, Fritzsch B (2003) Development of inner ear projections and their central targets. Brain Res Bull 60:407–510.

    Article  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of the reptiles. In: Ottoson D (ed) Progress in Sensory Physiology. Berlin, Heidelberg, York: Springer-Verlag, pp. 49–134.

    Chapter  Google Scholar 

  • Manley GA, Koppl C, Konishi M (1988) A neural map of interaural intensity differences in the brain stem of the barn owl. J Neurosci 8:2665–2676.

    PubMed  CAS  Google Scholar 

  • Manley JA (1971) Single unit studies in the midbrain auditory area of caiman. Z Vergl Physiol 71:255–261.

    Article  Google Scholar 

  • Manteuffel G, Naujoks-Manteuffel C (1990) Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele Salamandra salamandra. J Hirnforsch 31:65–76.

    PubMed  CAS  Google Scholar 

  • Margoliash D, Fortune ES (1992) Temporal and harmonic sombination-sensitive neurons in the zebra finch’s HVc. J Neurosci 12:4309–4326.

    PubMed  CAS  Google Scholar 

  • Masino T, Knudsen EI (1992) Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl. Exp Brain Res 92:194–208.

    Article  PubMed  CAS  Google Scholar 

  • Masterton RB, Diamond IT (1967) Medial superior olive and sound localization. Science 155:1696–1697.

    Article  PubMed  CAS  Google Scholar 

  • May BJ (2000) Role of the dorsal cochlear nucleus in the sound localization behavior of cats. Hear Res 148:74–87.

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localization and delay lines-do mammals fit the model? Trends Neurosci 26:347–350.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Fay RR, Popper AN, Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. York: Springer-Verlag, pp. 155–217.

    Chapter  Google Scholar 

  • McCormick CA (2002) Variations on a vertebrate theme: central anatomy of the auditory system in fish. Bioacoust 12:134–137.

    Article  Google Scholar 

  • McKibben JR, Bass AH (1999) Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones. J Comp Physiol [A] 184:563–576.

    Article  CAS  Google Scholar 

  • Meininger V, Pol D, Derer P (1986) The inferior colliculus of the mouse. A Nissl and Golgi study. Neurosci 17:1159–1179.

    Article  CAS  Google Scholar 

  • Mello CV, Vates GE, Okuhata S, Nottebohm F (1998) Descending auditory pathways in the adult male ebra finch (Taeniopygia guttata). J Comp Neurol 395:137–160.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Schreiner CE (1992) Mammalian auditory cortex: some comparative observations. In: Webster DB, Day RR, Popper AN (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 673–690.

    Chapter  Google Scholar 

  • Metzner W (1996) Anatomical basis for audio-vocal integration in echolocating horseshoe bats. J Comp Neurol 368:252–269.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res 181:31–48.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Xu L, Furukawa S, Macpherson EA (2002) Cortical neurons that localize sounds. Neuroscientist 8:73–83.

    Article  PubMed  Google Scholar 

  • Miller MR (1975) The cochlear nuclei of lizards. J Comp Neurol 159:375–405.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980) The cochlear nuclei of snakes. J Comp Neurol 192:717–736.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Kasahara M (1979) The cochlear nuclei of some turtles. J Comp Neurol 185:221–235.

    Article  PubMed  CAS  Google Scholar 

  • Mittmann DH, Wenstrup JJ (1995) Combination-sensitive neurons in the inferior colliculus. Hear Res 90:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A (1989) Bi-coordinate sound localization by the barn owl. J Comp Physio [A] 164:637–644.

    Article  CAS  Google Scholar 

  • Monsivais P, Rubel EW (2001) Accommodation enhances depolarizing inhibition in central neurons. J Neurosci 21:7823–7830.

    PubMed  CAS  Google Scholar 

  • Monsivais P, Yang L, Rubel EW (2000) GABAergic inhibition in nucleus magnocellularis: implications for phase locking in the avian auditory brainstem. J Neurosci 20:2954–2963.

    PubMed  CAS  Google Scholar 

  • Morest DK (1968) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwicklungsgesch 127:201–220.

    Article  PubMed  CAS  Google Scholar 

  • Moss CF, Schnitzler H-U (1995) Behavioral studies of auditory information processing. In: Fay RR, Popper AN (eds) Springer Handbook of Auditory Research: Hearing by Bats. Berline, Heidelberg, York: Springer-Verlag, pp. 87–145.

    Google Scholar 

  • Narins PM, Capranica RR (1980) Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol 17:48–66.

    Article  PubMed  CAS  Google Scholar 

  • Norberg RA (1978) Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy. Philos Trans R Soc Lond [B] Biol Sci 280:375–408.

    Article  Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301–350.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1990) Ontogeny and phylogeny: a re-evaluation of conceptual relationships and some applications. Brain Behav Evol 36:116–140.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1996) The Agnathan ark: the origin of craniate brains. Brain Behav Evol 48: 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG, Kaas JH (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18:373–379.

    Article  PubMed  CAS  Google Scholar 

  • Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proc Natl Acad Sci USA 97:11773–11779.

    Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. York: Springer-Verlag, pp. 168–221.

    Chapter  Google Scholar 

  • Overholt E, Rubel EW, Hyson RL (1992) A circuit for coding interaural time differences in the chick brainstem. J Neurosci 12:1698–1708.

    PubMed  CAS  Google Scholar 

  • Owen R (1848) On the archetype and homologies of vertebrate skeleton. Assoc Adv Sci 16:169–340.

    Google Scholar 

  • Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J Comp Neurol 164:435–448.

    Article  PubMed  CAS  Google Scholar 

  • Pauley S, Wright TJ, Pirvola U, Omitz D, Beisel K, Fritzsch B (2003) Expression and function of FGFlO in mammalian inner ear development. Dev Dyn 227:203–215.

    Article  PubMed  CAS  Google Scholar 

  • Pena JL, Konishi M (200I) Auditory spatial receptive fields created by multiplication. Science 292:249–252.

    Google Scholar 

  • Pena JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16:70467054.

    Google Scholar 

  • Pichaud F, Desplan C (2002) Pax genes and eye organogenesis. Curr Opin Genet Dev 12:430–434.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD, Burger RM, Klug A (2003) Dissecting the circuitry of the auditory system. Trends Neurosci 26:33–39.

    Google Scholar 

  • Popper AN, Fay RR (1999) The acoustic periphery in fishes. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. York: Spriner-Verlag, pp. 43100.

    Google Scholar 

  • Portfors CV, Wenstrup II (1999) Delay-tuned neurons in the inferior colliculus of the mustached bat: implications for analyses of target distance. J Neurophysiol 82:1326–1338.

    PubMed  CAS  Google Scholar 

  • Potter DH (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28:1132–1154.

    PubMed  CAS  Google Scholar 

  • Pritz MB (1974) Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:199–214.

    Article  PubMed  CAS  Google Scholar 

  • Pritz MB, Stritzel ME (1989) Reptilian somatosensory midbrain: identification based on input from the spinal cord and dorsal column nucleus. Brain Behav Evol 33:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Pritz MB, Stritzel ME (1994) Anatomical identification of a telencephalic somatosensory area in a reptile, Caiman crocodilus. Brain Behav Evol 43:107–127.

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Rubenstein JL (1999) Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur J Morphol 37:139–150.

    Article  PubMed  CAS  Google Scholar 

  • Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001) Formation of brainstern (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnxfflx3. Genes Dev 15:2533–2545.

    Article  PubMed  CAS  Google Scholar 

  • Ramon Y Cajal S (1907) Histologie du Systeme Nerveux de l’Homme et des Vertebrates. Paris: Malonie.

    Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806.

    Article  PubMed  CAS  Google Scholar 

  • Rayleigh, Lord Strutt JW 3rd, Baron Rayleigh (1907) On our perception of sound direction. Philos Mag 13:214–232.

    Article  Google Scholar 

  • Reichert C (1837) Ueber die Visceralbogen der Wierbelthiere im Allgemeinen und deren Metamorphose bei den Saeugethieren und Voegeln. Arch Anat Phys Med 120–222.

    Google Scholar 

  • Reyes AD, Rubel EW, Spain WJ (1996) In vitro analysis of optimal stimuli for phaselocking and time-delayed modulation of firing in avian nucleus laminaris neurons. J Neurosci 16:993–1007.

    PubMed  CAS  Google Scholar 

  • Rheinlander J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phono taxis by the green tree frog (Hyla cinerea). J Comp Physiol 133:247–256.

    Article  Google Scholar 

  • Rheinlander J, Walkowiak W, Gerhardt HC (1981) Directional hearing in the green tree frog: a variable mechanism? Naturwissenschaften 68:430–431.

    Article  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. York: SpringerVerlag, pp. 94–152.

    Chapter  Google Scholar 

  • Roberts BL, Meredith GE (1992). The efferent innervation of the ear: variations on an enigma. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. York: Springer-Verlag, pp. 182–210.

    Google Scholar 

  • Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathways. J Comp Physiol [A] 136:183–190.

    Article  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Parks TN (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of N. magnocellularis and N. laminaris. J Comp Neurol 164:411–433.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull 60:435–456.

    Article  PubMed  Google Scholar 

  • Ryugo DK, Rouiller EM (1988) Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric correlations with physiological properties. J Comp Neurol 271:130–142.

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Sinnott JM (1978) Responses to tones of single cells in Nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoenice us). J Comp Physiol 126:347–361.

    Article  Google Scholar 

  • Scheich H (1990) Representational geometries of telencephalic auditory maps in birds and mammals. In: Scheich H (ed) The Neocortex—Ontogeny and Phylogeny. York: Plenum, pp. 119–135.

    Google Scholar 

  • Scheich H, Langner G, Koch R (1977) Coding of narrow-band and wide-band vocalizations in the auditory midbrain nucleus (MLD) of the guinea fowl (Numida meleagris). J Comp Physiol 117:245–265.

    Article  Google Scholar 

  • Scheich H, Langner G, Bonke D (1979) Responsiveness of units in the auditory neo-striatum of the guinea fowl (numida meleagris) to species specific calls and synthetic stimuli. II. Discrimination of iambus-like calls. J Comp Physiol 132:257–276.

    Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 117–167.

    Chapter  Google Scholar 

  • Shofner WP, Dye RH Jr (1989) Statistical and receiver operating characteristic analysis of empirical spike-count distributions: quantifying the ability of cochlear nucleus units to signal intensity changes. J Acoustl Soc Am 86:2172–2184.

    Google Scholar 

  • Smith PH, Spirou GA (2002) From the cochlea to the cortex and back. In: Oertel D, Fay RR, Popper AN (eds) Integrative Functions in the Mammalian Auditory Pathway. New York: Springer-Verlag, pp. 6–71.

    Google Scholar 

  • Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142.

    PubMed  CAS  Google Scholar 

  • Soares D (2002) Diversity and common themes in the archosaur auditory brainstem. Ph.D. thesis, Dept. of Biology, University of Maryland, College Park, Maryland.

    Google Scholar 

  • Soares D, Carr CE (2001) The cytoarchitecture of the nucleus angularis of the barn owl (Tyto alba). J Comp Neurol 429:192–205.

    Article  PubMed  CAS  Google Scholar 

  • Soares D, Chitwood RA, Hyson RL, Carr CE (2002) The intrinsic neuronal properties of the chick nucleus angularis. J Neurophysiol 88:152–162.

    PubMed  Google Scholar 

  • Spirou GA, Berrebi AS (1996) Organization of ventrolateral periolivary cells of the cat superior olive as revealed by pep-19 immunocytochemistry and nissl stain. J Comp Neurol 368:100–120.

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neurol 312:311–331.

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF (1994) The vocal control pathways in budgerigars differ from those in songbirds. J Comp Neurol 343:35–56.

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF (1997) The telencephalon of tetrapods in evolution. Brain Behav Evol 49: 179–213.

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF, Keefer BP (2000) Cell migration and aggregation in the developing telencephalon: pulse-labeling chick embryos with bromodeoxyuridine. J Neurosci 20:8021–8030.

    PubMed  CAS  Google Scholar 

  • Suga N (1988) Parallel-heirarchical processing of biosonar information in the mustached bat. In: Nachtigall P, Moore P (eds) Animal Sonar. York: Plenum, pp. 149–159.

    Chapter  Google Scholar 

  • Suga N, O’Neill WE, Manabe T (1978) Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science 200:778–781.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. J Neurophysiol 53:201–216.

    PubMed  CAS  Google Scholar 

  • Szpir MR, Sento S, Ryugo DR (1990) Central projections of cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547.

    Article  PubMed  CAS  Google Scholar 

  • Szpir MR, Wright DO, Ryugo OK (1995) Neuronal organization of the cochlear nuclei in alligator lizards: a light and electron microscopic investigation. J Comp Neurol 357:217–24.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TT, Keller CH (1992) Commissural connections mediate inhibition for the computation of interaural level differences in the barn owl. J Comp Physiol [A] 170:161–169.

    CAS  Google Scholar 

  • Takahashi TT, Konishi M (1988a) Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274:190–211.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TT, Konishi M (1988b) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Konishi M (2002) Manipulation of inhibition in the owl’s nucleus laminaris and its effects on optic tectum neurons. Neuroscience 111:373–378.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TT, Barberini CL, Keller CH (1995) An anatomical substrate for the inhibitory gradient in the VLVp of the owl. J Comp Neurol 358:294–304.

    Article  PubMed  CAS  Google Scholar 

  • Ten Donkelaar HJ (1998) Anurans. In: Nieuwenhuys R, Donkelaar HJT, Nicholson C (eds) The Central Nervous System of Vertebrates. York: Springer-Verlag, pp. 1151–1314.

    Google Scholar 

  • Thompson SP (1882) On the function of the two ears in the perception of space. Philos Mag 13:406–416.

    Article  Google Scholar 

  • Trussell LO (2002) Cellular mechanisms for information coding in auditory brainstem nuclei. In: Oertel D, Fay RR, Popper AN (eds) Integrative Functions in the Mammalian Auditory Pathway. York: Springer-Verlag, pp. 72–98.

    Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Siayman C, Hunkapiller M, Bolanos R, Deicher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C et al. (2001) The sequence of the human genome. Science 291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF, Plack CJ (1993) Time analysis. In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. York: Springer-Verlag, pp. 116–154.

    Chapter  Google Scholar 

  • Volman SF, Konishi M (1990) Comparative physiology of sound localization in 4 species of owls. Brain Behav Evol 36:196–215.

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64.

    Article  CAS  Google Scholar 

  • von Melchner L, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404:871–876.

    Article  CAS  Google Scholar 

  • Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Mathl null mice: new functions evolve in new cellular contexts. Curr Biol 12:1611–1616.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86:2616–2620.

    PubMed  CAS  Google Scholar 

  • Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol [A] 166:721–734.

    CAS  Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neurosci 22:897–912.

    Article  CAS  Google Scholar 

  • Wilczynski W (1984) Central neural systems subserving a homoplasous periphery. Am Zool 24:755–763.

    Google Scholar 

  • Wilczynski W (1988) Brainstem auditory pathways in anurans. In: Fritzsch B, Wilczynski W, Ryan MJ, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. York: Wiley, pp. 209–231.

    Google Scholar 

  • Wilczynski W, Allison JD, Marler CA (1993) Sensory pathways linking social and environmental cues to endocrine control regions of amphibian forebrains. Brain Behav Evol 42:252–264.

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1993) Descending projections of the songbird nucleus robustus archistriatalis. J Comp Neurol 338:225–241.

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1994) The auditory-vocal-respiratory axis in birds. Behav Evol Brain 44: 192–209.

    Article  CAS  Google Scholar 

  • Wild JM (1997) Neural pathways for the control of birdsong production. J Neurobiol 33:653–670.

    Article  PubMed  CAS  Google Scholar 

  • Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62.

    Article  PubMed  CAS  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Popper AN, Fay RR, Webster DB (eds) The Mammalian Auditory Pathway: Neuroanatomy. York: Springer-Verlag, pp. 222–409.

    Chapter  Google Scholar 

  • Winter P, Schwartzkopff J (1961) Form und Zellzahl der akustischen Nervenzentren in der Medulla oblongata Eulen (Striges). Experientia 17:515–518.

    Article  PubMed  CAS  Google Scholar 

  • Woodworth RS (1962) Experimental Psychology. York: Rinehart and Winston.

    Google Scholar 

  • Woolley SMN, Casseday JH (2001a) Tuning properties of auditory midbrain neurons in adult male zebra finches. Soc Neurosci Abstr 17:724.

    Google Scholar 

  • Woolley SMN, Casseday JH (2001b) Acoustic tuning to songs and calls in songbird auditory midbrain neurons. Int Soc Neuroethol abstr 144.

    Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and FgflO are required for mouse otic placode induction. Development 130:3379–3390.

    Article  PubMed  CAS  Google Scholar 

  • Wu SH (1999) Synaptic excitation in the dorsal nucleus of the lateral lemniscus. Prog Neurobiol 57:357–375.

    Article  PubMed  CAS  Google Scholar 

  • Xiang M, Maklad A, Pirvola U, Fritzsch B (2003) Brn3c null mutant mice show longterm, incomplete retention of some afferent inner ear innervation. BMC Neurosci 4:2.

    Article  PubMed  Google Scholar 

  • Yang L, Monsivais P, Rubel EW (1999) The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem. J Neurosci 19:2313–2325.

    PubMed  CAS  Google Scholar 

  • Yin TC (2002) Neural mechanisms of encoding binaural localization cues. In: Oertel D, Fay RR, Popper AN (eds) Integrative Functions in the Mammalian Auditory Pathway. New York: Springer-Verlag, pp. 99–159.

    Google Scholar 

  • Young ED, Davis KA (2002) Circuitry and function of the dorsal cochlear nucleus. In: Oertel D, Fay RR, Popper AN (eds) Integrative Functions in the Mammalian Auditory Pathway. York: Springer-Verlag, pp. 160–206.

    Google Scholar 

  • Young ED, Rubel EW (1983) Frequency-specific projections of individual neuron s in chick brainstem auditory nuclei. J Neurosci 3: 1373–1378.

    PubMed  CAS  Google Scholar 

  • Zhang S, Oertel D (1993) Giant cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. J Neurophysiol 69:1398–1408.

    PubMed  CAS  Google Scholar 

  • Zhang S, Oertel D (1994) Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. J Neurophysiol 71:914–930.

    PubMed  CAS  Google Scholar 

  • Zook JM, Winer JA, Pollak GD, Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat’ s inferior colliculus: correlation of single unit properties and neuronal architecture. J Comp Neurol 231:530–546.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grothe, B., Carr, C.E., Casseday, J.H., Fritzsch, B., Köppl, C. (2004). The Evolution of Central Pathways and Their Neural Processing Patterns. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics