Frequency Dependence of EPR Sensitivity

  • George A. Rinard
  • Richard W. Quine
  • Sandra S. Eaton
  • Gareth R. Eaton
Part of the Biological Magnetic Resonance book series (BIMR, volume 21)


Contrary to some prior derivations, it is shown that the sensitivity of EPR measurements is, as expected, the same as for NMR, and that in general comparisons of EPR sensitivity as a function of frequency have been pessimistic by one factor of ω. The sensitivity of EPR can increase at lower frequency if the sample size is scaled inversely with frequency.


Frequency Dependence Phase Noise Filling Factor Electron Paramagnetic Resonance Signal Electron Paramagnetic Resonance Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abragam, A., 1961, The Principles of Nuclear Magnetism, Oxford University Press, Oxford.Google Scholar
  2. Abragam, A., and Bleaney, B., 1970, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford.Google Scholar
  3. Alger, R. S., 1968, Electron Paramagnetic Resonance: Techniques and Applications, Wiley- Interscience, New York, p. 133ff.Google Scholar
  4. Andrew, E. R., 1989, Magnetic Resonance and Related Phenomena, Elsevier (24 Ampere Congress, Poznan, 1988), p. 45–51.Google Scholar
  5. Batt, R. J., Jones, G. D., and Harris, D. J., 1977, The Measurement of the Surface Resistivity of Evaporated Gold at 890 GHz, IEEE Trans. Microwave Theory and Techniques MTT- 25:488–491.CrossRefGoogle Scholar
  6. Benson, F. A., 1969, Attenuation of rectangular waveguides, in Millimetre and Submillimetre Waves, F. A. Benson, ed., Iliffe Books Ltd., London.Google Scholar
  7. Bloembergen, N., and Pound, R. V., 1954, Radiation Damping in Magnetic Resonance Experiments. Phys. Rev. 95: 8–12.CrossRefGoogle Scholar
  8. Bloom, A. L., 1955, Nuclear Induction in Inhomogeneous Fields. Phys. Rev. 98: 1105–1 111.CrossRefGoogle Scholar
  9. Chen, C.-N. and Hoult, D. I., 1989, Biomedical Magnetic Resonance Technology, Adam Hilger, Bristol.Google Scholar
  10. Davids, D. A., and Wagner, P. E., 1964, Magnetic Field Dependence of Paramagnetic Relaxation in a Kramers Salt, Phys. Rev. Lett. 12:141–142.CrossRefGoogle Scholar
  11. Davis, J. L., and Mims, W. B., 1981, Use of a microwave delay line to reduce the dead time in electron spin echo envelope spectroscopy, Rev. Sci. Instrum. 52:131–132.CrossRefGoogle Scholar
  12. Davoust, C. E., Doan, P. E., and Hoffman, B. M., 1996, Q-Band Pulsed Electron Spin-Echo Spectrometer and Its Application to ENDOR and ESEEM. J. Magn. Reson. A 119:38–44.CrossRefGoogle Scholar
  13. Eaton, S. S. and Eaton, G. R., 2000, Relaxation Times of Organic Radicals and Transition Metal Ions, in Distance Measurements in Biological Systems by EPR, G. R. Eaton, S. S. Eaton, and L. J. Berliner, eds., Biol. Magn. Reson. 19, 29–154.Google Scholar
  14. Eaton, G. R., Eaton, S. S., and Rinard, G. A., 1998, Frequency Dependence of EPR Sensitivity, in Spatially Resolved Magnetic Resonance, P. Blülmler, B. Blümich, R. E. Botto, and E. Fukushima, ed., Wiley-VCH Publ., pp. 65–74.Google Scholar
  15. Edelstein, W. A., Glover, G. H., Hardy, C. J., and Redington, R. W., 1986, The Intrinsic Signal-to-Noise Ratio in NMR Imaging, Magn. Reson. Med. 3:604–618.PubMedCrossRefGoogle Scholar
  16. Feher, G., 1957, Sensitivity Considerations in Microwave Paramagnetic resonance Absorption Techniques, Bell System Technical Journal 36:449–484.Google Scholar
  17. Foster, T. H., 1992, Tissue Conductivity Modifies the Magnetic Resonance Intrinsic Signal-to-Noise Ratio at High Frequencies. Magn. Resort. Med. 23:383–385.CrossRefGoogle Scholar
  18. Fraenkel, G. K., 1960, Paramagnetic Resonance Absorption, in Technique of Organic Chemistry, Vol. I - Part IV, Physical Methods of Organic Chemistry, 3rd Ed., A. Weissberger, ed., Interscience Publishers, New York, ch. XLII.Google Scholar
  19. Gadian, D. G., and Robinson, F. N. H., 1979, Radiofrequency Losses in NMR Experiments on Electrically Conducting Samples, J. Magn. Reson. 34:449–455.Google Scholar
  20. Goldsmith, P. F., 1982, Quasi-Optical Techniques at Millimeter and Submillimeter Wavelengths, Infrared and Millimeter Waves 6:277–342.Google Scholar
  21. Goldsmith, P. F., 1998, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, IEEE Press, New York, p. 119ff, 303ff.Google Scholar
  22. Haas, D. A., Sugano, T., Mailer, C, and Robinson, B. H., 1993, Motion in Nitroxide Spin Labels: Direct Measurement of Rotational Correlation Times by Pulsed Electron Double Resonance, J. Phys. Chem. 97:2914–2921.CrossRefGoogle Scholar
  23. Halpern, H. J., and Bowman, M. K., 1989, Low frequency EPR imaging in EPR Imaging and in vivo EPR, G. R. Eaton, S. S. Eaton, and K. Ohno, eds., CRC Press, Boca Raton, FL, ch. 6.Google Scholar
  24. Harrington, R. F., 1961, Time-Harmonic Electromagnetic Fields. McGraw-Hill Book Co., New York.Google Scholar
  25. Hoult, D. I., 1996, Sensitivity of the NMR Experiment in Encyclopedia of NMR, D. M. Grant and R. K. Harris, eds.. 7:4256–4266.Google Scholar
  26. Hoult, D. I., Chen, C.-N., and Sank, V. J., 1986, The Field Dependence of NMR Imaging II. Arguments Concerning an Optimal Field Strength, Magn. Reson. Med. 3:730–746.PubMedCrossRefGoogle Scholar
  27. Hoult, D. I., and Lauterbur, P. C, 1979, The Sensitivity of the Zeugmatographic Experiment Involving Human Samples. J. Magn. Reson. 34:425–433.Google Scholar
  28. Hoult, D. I., and Richards, R. E., 1976, The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, J. Magn. Reson. 24:71–85.Google Scholar
  29. Hyde, J. S., Yin, J.-J., Feix, J. B., and Hubbell, W. L., 1990, Advances in spin label oximetry. Pure & Applied Chem. 62:255–260.CrossRefGoogle Scholar
  30. Jiang, J., Liu, K. J., Walczak, T., and Swartz, H. M., 1995, An Analysis of the Effects of Eddy Currents on L-Band EPR Spectra. J. Magn. Reson. B 106: 220–226.PubMedCrossRefGoogle Scholar
  31. Johnson, C. C, and Guy, A. W., 1972, Nonionizing Electromagnetic Wave Effects in Biological Materials and Systems, Proceed. IEEE 60:692–718.CrossRefGoogle Scholar
  32. Kutter, C, Moll, H. P., van Tol, J., Zuckerman, H., Mann, J. C, and Wyder, P., 1995, Electron Spin Echoes at 604 GHz Using Far Infrared Lasers. Phys. Rev. Lett. 74: 2925–2928.PubMedCrossRefGoogle Scholar
  33. Lee, C. A., and Dalman, G. C, 1994, Microwave Devices, Circuits and Their Interaction, Wiley, New York.Google Scholar
  34. Lloyd, J. P., and Pake, G. E., Spin Relaxation in Free Radical Solutions Exhibiting Hyperfine Structure. Phys. Rev. 94: 579–591 (1954).CrossRefGoogle Scholar
  35. Losee, F., 1997, RF Systems, Components, and Circuits Handbook, Artech House, Boston, p. 345.Google Scholar
  36. Mailer, C, Thomann, H., Robinson, B. H., and Dalton, L. R., 1980, Crossed TM110 bimodal cavity for measurement of dispersion electron paramagnetic resonance and saturation transfer electron paramagnetic resonance signals for biological materials, Rev. Sci. Instrum. 51:1714–1721.CrossRefGoogle Scholar
  37. Makovski, A., 1996, Noise in MRI, Magn. Reson. Med. 36:494–497.CrossRefGoogle Scholar
  38. Mansfield, P., and Morris, P. G., 1982, NMR Imaging in Biomedicine (Supplement 2, Advances in Magnetic Resonance), Academic Press, pp. 310–330.Google Scholar
  39. Mims, W. B., 1965, Electron echo Methods in Spin Resonance Spectrometry, Rev. Sci. Instrum. 36: 1472–1479.CrossRefGoogle Scholar
  40. Mims, W. B., 1972, Electron Spin Echoes, in “Electron Paramagnetic Resonance,” S. Geschwind. ed.. Plenum Press. New York.Google Scholar
  41. Muller, F., Hopkins, M. A., Coron, N., Grynberg, M., Brunei, L. C, and Martinez, G., 1989, A high magnetic field EPR spectrometer, Rev. Sci. Instrum. 60:3681–3684.CrossRefGoogle Scholar
  42. Murugesan, R., Cook, J. A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J. A., Mitchell, J. B., Russo, A., and Krishna, M. C, 1997, In Vivo Imaging of a Stable Paramagnetic Probe by Pulsed-Radiofrequency Electron Paramagnetic Resonance Spectroscopy, Magn. Reson. Med. 38: 409–414.PubMedCrossRefGoogle Scholar
  43. Narayana, P. A., Massoth, R. J., and Kevan, L., 1982, Active microwave delay line forreducing the dead time in electron spin-echo spectrometry, Rev. Sci. Instrum. 53:624–626.CrossRefGoogle Scholar
  44. Petropoulos, L. S., and Haacke, E. M., 1991, Higher-Order Frequency Dependence of Radiofrequency Penetration in Planar, Cylindrical, and Spherical Models, J. Magn. Reson. 91:466–474.Google Scholar
  45. Pfenninger, S., Froncisz, W., and Hyde, J. S., 1995a, Noise Analysis of EPR Spectrometers with Cryogenic Microwave Preamplifiers. J. Magn. Reson., A 113, 32–39.CrossRefGoogle Scholar
  46. Pfenninger, S., Froncisz, W., Forrer, J., Luglio, J., and Hyde, J. S., 1995b, General method for adjusting the quality factor of EPR resonators, Rev. Sci. Instrum. 66:4857–4865.CrossRefGoogle Scholar
  47. Piasecki, W., Froncisz, W., and Hyde, J. S., 1996, Bimodal loop-gap resonator, Rev. Sci. Instrum. 67:1896–1904.CrossRefGoogle Scholar
  48. Poole, C. P. Jr., 1967, Electron Spin Resonance, Wiley, New York, ch. 14.Google Scholar
  49. Prisner, T. F., 1997, Pulsed High-Frequency/High-Field EPR, Adv. Magn. Optic. Reson. 20: 245–299.CrossRefGoogle Scholar
  50. Rinard, G. A, Quine, R. W., Eaton, S. S., Eaton, G. R., and Froncisz, W., 1994, Relative Benefits of Overcoupled Resonators vs. Inherently Low-Q Resonators for Pulsed Magnetic Resonance, J. Masn. Reson. A 108: 71–81.CrossRefGoogle Scholar
  51. Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., and Eaton, G. R., 1996, Easily Tunable Crossed-Loop (Bimodal) EPR Resonator, J. Magn. Reson. A 122:50–57.CrossRefGoogle Scholar
  52. Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., and Eaton, G. R., 1996, Dispersion and Superheterodyne EPR Using a Bimodal Resonator, J. Magn. Reson. A 122:58–63.CrossRefGoogle Scholar
  53. Rinard, G. A, Eaton, S. S., Eaton, G. R., Poole, C. P., Jr., and Farach, H. A., 1999a, Sensitivity, in Handbook of Electron Spin Resonance, C. P. Poole, Jr. and H. A. Farach, eds, AIP Press, 2:1–23.Google Scholar
  54. Rinard, G. A, Quine, R. W., Song, R. Eaton, G. R., and Eaton, S. S., 1999b, Absolute EPR Spin Echo and Noise Intensities. J.Magn.Reson.140:69–83.CrossRefGoogle Scholar
  55. Rinard, G. A, Quine, R. W., Harbridge, J. R„ Song, R., Eaton, G. R., and Eaton, S. S., 1999c, Frequency Dependence of EPR Signal-to-Noise, J.Magn.Reson.140, 218–227.CrossRefGoogle Scholar
  56. Rinard, G. A., Quine, R. W., and Eaton, G. R., 2000, An L-band Crossed-Loop (Bimodal) Resonator, J.Magn.Reson. 144, 85–88.PubMedCrossRefGoogle Scholar
  57. Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R., 2002a, Frequency Dependence of EPR Signal Intensity, 250 MHz to 9.1 GHz, J. Magn. Reson. 156, 113–121.CrossRefGoogle Scholar
  58. Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R., 2002b, Frequency Dependence of EPR Signal Intensity, 248 MHz to 1.4 GHz, J. Magn. Reson. 154, 80–84.CrossRefGoogle Scholar
  59. Rinard, G. A., Quine, R. W., Eaton, G. R., and Eaton, S. S., 2002c, 250 MHz Crossed Loop Resonator for Pulsed Electron Paramagnetic Resonance, Magn. Reson. Engineer. 15, 37–46.Google Scholar
  60. Robinson, B. H., Haas, D. A., and Mailer, C, 1994, Molecular Dynamics in Liquids: Spin- Lattice Relaxation of Nitroxide Spin Labels, Science 263:490–493.PubMedCrossRefGoogle Scholar
  61. Röschmann, P., 1987, Radiofrequency penetration and absorption in the human body: Limitations to high-field whole-body nuclear magnetic resonance imaging, Med. Phys. 14:922–937.PubMedCrossRefGoogle Scholar
  62. Stoodley, L. G. 1963, The Sensitivity of Microwave Electron Spin Resonance Spectrometers for use with Aqueous Solutions, J. Elect. Control 14:531–546.CrossRefGoogle Scholar
  63. Strutz, T., Witowski, A. M, and Wyder, P., 1992, Spin-Lattice Relaxation at High Magnetic Fields. Phys. Rev. Lett. 68: 3912–3915.PubMedCrossRefGoogle Scholar
  64. Sueki, M., Rinard, G. A., Eaton, S. S., and Eaton, G. R., 1996, Impact of High Dielectric Loss Materials on the Microwave Field in EPR Experiments, J. Magn. Reson. A 118:173–188.CrossRefGoogle Scholar
  65. Tofts, P. S., 1994, Standing Waves in Uniform Water Phantoms, J. Magn. Reson. B 104:143–147.CrossRefGoogle Scholar
  66. Varian spectrometer manual 87–125–052, page 87–125.Google Scholar
  67. Vlaardingerbroek, M. T., and den Boer, J. A., 1996, Magnetic Resonance Imaging, Springer, New York.Google Scholar
  68. Weber, A., Schliemann, O., Bode, B. and Prisner, T., 2002, PELDOR at S- and X-Band Frequencies and the Separation of Exchange Coupling from Dipolar Coupling. J. Magn. Reson. 157, 277–285.PubMedCrossRefGoogle Scholar
  69. Weil, J. A., Bolton, J. R., and Wertz, J. E., Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, New York, 1994.Google Scholar
  70. Wilier, M., Forrer, J., Keller, J., Van Doorsiaer, S., and Schweiger, A., 2000, S-band (2 – 4 GHz) pulse electron paramagnetic resonance spectrometer: Construction, probe head design, and performance. Rev. Sci. Instrum. 71, 2807–2817.CrossRefGoogle Scholar
  71. Wilmshurst, T. M., 1968, Electron Spin Resonance Spectrometers, Plenum Press, New York.Google Scholar
  72. Wilmshurst, T. K, 1990, Signal Recovery from Noise in Electronic Instrumentation, 2nd ed., Adam Hilger - IOP Publishing, page 87.Google Scholar
  73. Witowski, A. M., 1991, The Two-Phonon Spin-Lattice Relaxation Processes in High Magnetic Fields. Solid State Commun. 77: 23–27.CrossRefGoogle Scholar
  74. Witowski, A. M., Kutter, C, and Wyder, P., 1997, Spin-Lattic Relaxation at High Magnetic Fields: A Tool for Electron-Phonon Coupling Studies. Phys. Rev. Lett. 78: 3951–3954.CrossRefGoogle Scholar
  75. Yong, L., Harbridge, J., Quine, R. W., Rinard, G. A., Eaton, S. S., Eaton, G. R., Mailer, C, Barth, E., and Halpern, H. J., 2001, Electron Spin Relaxation of Triarylmethyl Radicals in Fluid Solution.J. Magn. Reson. 152, 156–161.PubMedCrossRefGoogle Scholar
  76. Zecevic, A., Eaton, G. R., Eaton, S. S., and Lindgren, M., 1998, Dephasing of Electron Spin Echoes for Nitroxyl Radicals in Glassy Solvents by Non-methyl and Methyl Protons, Mol. Phys. 95: 1255–1263.CrossRefGoogle Scholar
  77. Zhou, Y., Bowler, B. E., Eaton, G. R., and Eaton, S. S., 1999, Electron Spin Relaxation Rates for S =1/2 Molecular Species in Glassy Matrices or Magnetically-Dilute Solids at Temperatures Between 10 and 300 K. J. Magn. Reson. 139:165–174.PubMedCrossRefGoogle Scholar
  78. Zypman, F. R., 1996, MRI Electromagnetic Field Penetration in Cylindrical Objects, Comput. Biol. Med. 26:161–175.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • George A. Rinard
    • 1
  • Richard W. Quine
    • 1
  • Sandra S. Eaton
    • 1
  • Gareth R. Eaton
    • 1
  1. 1.Department of Engineering and Department of Chemistry and BiochemistryUniversity of DenverDenverUSA

Personalised recommendations