Skip to main content

Frequency Dependence of EPR Sensitivity

  • Chapter
EPR: Instrumental Methods

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 21))

Abstract

Contrary to some prior derivations, it is shown that the sensitivity of EPR measurements is, as expected, the same as for NMR, and that in general comparisons of EPR sensitivity as a function of frequency have been pessimistic by one factor of ω. The sensitivity of EPR can increase at lower frequency if the sample size is scaled inversely with frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abragam, A., 1961, The Principles of Nuclear Magnetism, Oxford University Press, Oxford.

    Google Scholar 

  • Abragam, A., and Bleaney, B., 1970, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford.

    Google Scholar 

  • Alger, R. S., 1968, Electron Paramagnetic Resonance: Techniques and Applications, Wiley- Interscience, New York, p. 133ff.

    Google Scholar 

  • Andrew, E. R., 1989, Magnetic Resonance and Related Phenomena, Elsevier (24 Ampere Congress, Poznan, 1988), p. 45–51.

    Google Scholar 

  • Batt, R. J., Jones, G. D., and Harris, D. J., 1977, The Measurement of the Surface Resistivity of Evaporated Gold at 890 GHz, IEEE Trans. Microwave Theory and Techniques MTT- 25:488–491.

    Article  Google Scholar 

  • Benson, F. A., 1969, Attenuation of rectangular waveguides, in Millimetre and Submillimetre Waves, F. A. Benson, ed., Iliffe Books Ltd., London.

    Google Scholar 

  • Bloembergen, N., and Pound, R. V., 1954, Radiation Damping in Magnetic Resonance Experiments. Phys. Rev. 95: 8–12.

    Article  Google Scholar 

  • Bloom, A. L., 1955, Nuclear Induction in Inhomogeneous Fields. Phys. Rev. 98: 1105–1 111.

    Article  CAS  Google Scholar 

  • Chen, C.-N. and Hoult, D. I., 1989, Biomedical Magnetic Resonance Technology, Adam Hilger, Bristol.

    Google Scholar 

  • Davids, D. A., and Wagner, P. E., 1964, Magnetic Field Dependence of Paramagnetic Relaxation in a Kramers Salt, Phys. Rev. Lett. 12:141–142.

    Article  Google Scholar 

  • Davis, J. L., and Mims, W. B., 1981, Use of a microwave delay line to reduce the dead time in electron spin echo envelope spectroscopy, Rev. Sci. Instrum. 52:131–132.

    Article  CAS  Google Scholar 

  • Davoust, C. E., Doan, P. E., and Hoffman, B. M., 1996, Q-Band Pulsed Electron Spin-Echo Spectrometer and Its Application to ENDOR and ESEEM. J. Magn. Reson. A 119:38–44.

    Article  CAS  Google Scholar 

  • Eaton, S. S. and Eaton, G. R., 2000, Relaxation Times of Organic Radicals and Transition Metal Ions, in Distance Measurements in Biological Systems by EPR, G. R. Eaton, S. S. Eaton, and L. J. Berliner, eds., Biol. Magn. Reson. 19, 29–154.

    Google Scholar 

  • Eaton, G. R., Eaton, S. S., and Rinard, G. A., 1998, Frequency Dependence of EPR Sensitivity, in Spatially Resolved Magnetic Resonance, P. Blülmler, B. Blümich, R. E. Botto, and E. Fukushima, ed., Wiley-VCH Publ., pp. 65–74.

    Google Scholar 

  • Edelstein, W. A., Glover, G. H., Hardy, C. J., and Redington, R. W., 1986, The Intrinsic Signal-to-Noise Ratio in NMR Imaging, Magn. Reson. Med. 3:604–618.

    Article  PubMed  CAS  Google Scholar 

  • Feher, G., 1957, Sensitivity Considerations in Microwave Paramagnetic resonance Absorption Techniques, Bell System Technical Journal 36:449–484.

    Google Scholar 

  • Foster, T. H., 1992, Tissue Conductivity Modifies the Magnetic Resonance Intrinsic Signal-to-Noise Ratio at High Frequencies. Magn. Resort. Med. 23:383–385.

    Article  CAS  Google Scholar 

  • Fraenkel, G. K., 1960, Paramagnetic Resonance Absorption, in Technique of Organic Chemistry, Vol. I - Part IV, Physical Methods of Organic Chemistry, 3rd Ed., A. Weissberger, ed., Interscience Publishers, New York, ch. XLII.

    Google Scholar 

  • Gadian, D. G., and Robinson, F. N. H., 1979, Radiofrequency Losses in NMR Experiments on Electrically Conducting Samples, J. Magn. Reson. 34:449–455.

    CAS  Google Scholar 

  • Goldsmith, P. F., 1982, Quasi-Optical Techniques at Millimeter and Submillimeter Wavelengths, Infrared and Millimeter Waves 6:277–342.

    CAS  Google Scholar 

  • Goldsmith, P. F., 1998, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, IEEE Press, New York, p. 119ff, 303ff.

    Google Scholar 

  • Haas, D. A., Sugano, T., Mailer, C, and Robinson, B. H., 1993, Motion in Nitroxide Spin Labels: Direct Measurement of Rotational Correlation Times by Pulsed Electron Double Resonance, J. Phys. Chem. 97:2914–2921.

    Article  CAS  Google Scholar 

  • Halpern, H. J., and Bowman, M. K., 1989, Low frequency EPR imaging in EPR Imaging and in vivo EPR, G. R. Eaton, S. S. Eaton, and K. Ohno, eds., CRC Press, Boca Raton, FL, ch. 6.

    Google Scholar 

  • Harrington, R. F., 1961, Time-Harmonic Electromagnetic Fields. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Hoult, D. I., 1996, Sensitivity of the NMR Experiment in Encyclopedia of NMR, D. M. Grant and R. K. Harris, eds.. 7:4256–4266.

    Google Scholar 

  • Hoult, D. I., Chen, C.-N., and Sank, V. J., 1986, The Field Dependence of NMR Imaging II. Arguments Concerning an Optimal Field Strength, Magn. Reson. Med. 3:730–746.

    Article  PubMed  CAS  Google Scholar 

  • Hoult, D. I., and Lauterbur, P. C, 1979, The Sensitivity of the Zeugmatographic Experiment Involving Human Samples. J. Magn. Reson. 34:425–433.

    CAS  Google Scholar 

  • Hoult, D. I., and Richards, R. E., 1976, The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, J. Magn. Reson. 24:71–85.

    Google Scholar 

  • Hyde, J. S., Yin, J.-J., Feix, J. B., and Hubbell, W. L., 1990, Advances in spin label oximetry. Pure & Applied Chem. 62:255–260.

    Article  CAS  Google Scholar 

  • Jiang, J., Liu, K. J., Walczak, T., and Swartz, H. M., 1995, An Analysis of the Effects of Eddy Currents on L-Band EPR Spectra. J. Magn. Reson. B 106: 220–226.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. C, and Guy, A. W., 1972, Nonionizing Electromagnetic Wave Effects in Biological Materials and Systems, Proceed. IEEE 60:692–718.

    Article  Google Scholar 

  • Kutter, C, Moll, H. P., van Tol, J., Zuckerman, H., Mann, J. C, and Wyder, P., 1995, Electron Spin Echoes at 604 GHz Using Far Infrared Lasers. Phys. Rev. Lett. 74: 2925–2928.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. A., and Dalman, G. C, 1994, Microwave Devices, Circuits and Their Interaction, Wiley, New York.

    Google Scholar 

  • Lloyd, J. P., and Pake, G. E., Spin Relaxation in Free Radical Solutions Exhibiting Hyperfine Structure. Phys. Rev. 94: 579–591 (1954).

    Article  CAS  Google Scholar 

  • Losee, F., 1997, RF Systems, Components, and Circuits Handbook, Artech House, Boston, p. 345.

    Google Scholar 

  • Mailer, C, Thomann, H., Robinson, B. H., and Dalton, L. R., 1980, Crossed TM110 bimodal cavity for measurement of dispersion electron paramagnetic resonance and saturation transfer electron paramagnetic resonance signals for biological materials, Rev. Sci. Instrum. 51:1714–1721.

    Article  CAS  Google Scholar 

  • Makovski, A., 1996, Noise in MRI, Magn. Reson. Med. 36:494–497.

    Article  Google Scholar 

  • Mansfield, P., and Morris, P. G., 1982, NMR Imaging in Biomedicine (Supplement 2, Advances in Magnetic Resonance), Academic Press, pp. 310–330.

    Google Scholar 

  • Mims, W. B., 1965, Electron echo Methods in Spin Resonance Spectrometry, Rev. Sci. Instrum. 36: 1472–1479.

    Article  CAS  Google Scholar 

  • Mims, W. B., 1972, Electron Spin Echoes, in “Electron Paramagnetic Resonance,” S. Geschwind. ed.. Plenum Press. New York.

    Google Scholar 

  • Muller, F., Hopkins, M. A., Coron, N., Grynberg, M., Brunei, L. C, and Martinez, G., 1989, A high magnetic field EPR spectrometer, Rev. Sci. Instrum. 60:3681–3684.

    Article  CAS  Google Scholar 

  • Murugesan, R., Cook, J. A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J. A., Mitchell, J. B., Russo, A., and Krishna, M. C, 1997, In Vivo Imaging of a Stable Paramagnetic Probe by Pulsed-Radiofrequency Electron Paramagnetic Resonance Spectroscopy, Magn. Reson. Med. 38: 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Narayana, P. A., Massoth, R. J., and Kevan, L., 1982, Active microwave delay line forreducing the dead time in electron spin-echo spectrometry, Rev. Sci. Instrum. 53:624–626.

    Article  Google Scholar 

  • Petropoulos, L. S., and Haacke, E. M., 1991, Higher-Order Frequency Dependence of Radiofrequency Penetration in Planar, Cylindrical, and Spherical Models, J. Magn. Reson. 91:466–474.

    Google Scholar 

  • Pfenninger, S., Froncisz, W., and Hyde, J. S., 1995a, Noise Analysis of EPR Spectrometers with Cryogenic Microwave Preamplifiers. J. Magn. Reson., A 113, 32–39.

    Article  CAS  Google Scholar 

  • Pfenninger, S., Froncisz, W., Forrer, J., Luglio, J., and Hyde, J. S., 1995b, General method for adjusting the quality factor of EPR resonators, Rev. Sci. Instrum. 66:4857–4865.

    Article  CAS  Google Scholar 

  • Piasecki, W., Froncisz, W., and Hyde, J. S., 1996, Bimodal loop-gap resonator, Rev. Sci. Instrum. 67:1896–1904.

    Article  CAS  Google Scholar 

  • Poole, C. P. Jr., 1967, Electron Spin Resonance, Wiley, New York, ch. 14.

    Google Scholar 

  • Prisner, T. F., 1997, Pulsed High-Frequency/High-Field EPR, Adv. Magn. Optic. Reson. 20: 245–299.

    Article  CAS  Google Scholar 

  • Rinard, G. A, Quine, R. W., Eaton, S. S., Eaton, G. R., and Froncisz, W., 1994, Relative Benefits of Overcoupled Resonators vs. Inherently Low-Q Resonators for Pulsed Magnetic Resonance, J. Masn. Reson. A 108: 71–81.

    Article  Google Scholar 

  • Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., and Eaton, G. R., 1996, Easily Tunable Crossed-Loop (Bimodal) EPR Resonator, J. Magn. Reson. A 122:50–57.

    Article  CAS  Google Scholar 

  • Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., and Eaton, G. R., 1996, Dispersion and Superheterodyne EPR Using a Bimodal Resonator, J. Magn. Reson. A 122:58–63.

    Article  CAS  Google Scholar 

  • Rinard, G. A, Eaton, S. S., Eaton, G. R., Poole, C. P., Jr., and Farach, H. A., 1999a, Sensitivity, in Handbook of Electron Spin Resonance, C. P. Poole, Jr. and H. A. Farach, eds, AIP Press, 2:1–23.

    Google Scholar 

  • Rinard, G. A, Quine, R. W., Song, R. Eaton, G. R., and Eaton, S. S., 1999b, Absolute EPR Spin Echo and Noise Intensities. J.Magn.Reson.140:69–83.

    Article  CAS  Google Scholar 

  • Rinard, G. A, Quine, R. W., Harbridge, J. R„ Song, R., Eaton, G. R., and Eaton, S. S., 1999c, Frequency Dependence of EPR Signal-to-Noise, J.Magn.Reson.140, 218–227.

    Article  CAS  Google Scholar 

  • Rinard, G. A., Quine, R. W., and Eaton, G. R., 2000, An L-band Crossed-Loop (Bimodal) Resonator, J.Magn.Reson. 144, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R., 2002a, Frequency Dependence of EPR Signal Intensity, 250 MHz to 9.1 GHz, J. Magn. Reson. 156, 113–121.

    Article  CAS  Google Scholar 

  • Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R., 2002b, Frequency Dependence of EPR Signal Intensity, 248 MHz to 1.4 GHz, J. Magn. Reson. 154, 80–84.

    Article  CAS  Google Scholar 

  • Rinard, G. A., Quine, R. W., Eaton, G. R., and Eaton, S. S., 2002c, 250 MHz Crossed Loop Resonator for Pulsed Electron Paramagnetic Resonance, Magn. Reson. Engineer. 15, 37–46.

    Google Scholar 

  • Robinson, B. H., Haas, D. A., and Mailer, C, 1994, Molecular Dynamics in Liquids: Spin- Lattice Relaxation of Nitroxide Spin Labels, Science 263:490–493.

    Article  PubMed  CAS  Google Scholar 

  • Röschmann, P., 1987, Radiofrequency penetration and absorption in the human body: Limitations to high-field whole-body nuclear magnetic resonance imaging, Med. Phys. 14:922–937.

    Article  PubMed  Google Scholar 

  • Stoodley, L. G. 1963, The Sensitivity of Microwave Electron Spin Resonance Spectrometers for use with Aqueous Solutions, J. Elect. Control 14:531–546.

    Article  CAS  Google Scholar 

  • Strutz, T., Witowski, A. M, and Wyder, P., 1992, Spin-Lattice Relaxation at High Magnetic Fields. Phys. Rev. Lett. 68: 3912–3915.

    Article  PubMed  CAS  Google Scholar 

  • Sueki, M., Rinard, G. A., Eaton, S. S., and Eaton, G. R., 1996, Impact of High Dielectric Loss Materials on the Microwave Field in EPR Experiments, J. Magn. Reson. A 118:173–188.

    Article  CAS  Google Scholar 

  • Tofts, P. S., 1994, Standing Waves in Uniform Water Phantoms, J. Magn. Reson. B 104:143–147.

    Article  CAS  Google Scholar 

  • Varian spectrometer manual 87–125–052, page 87–125.

    Google Scholar 

  • Vlaardingerbroek, M. T., and den Boer, J. A., 1996, Magnetic Resonance Imaging, Springer, New York.

    Google Scholar 

  • Weber, A., Schliemann, O., Bode, B. and Prisner, T., 2002, PELDOR at S- and X-Band Frequencies and the Separation of Exchange Coupling from Dipolar Coupling. J. Magn. Reson. 157, 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Weil, J. A., Bolton, J. R., and Wertz, J. E., Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, New York, 1994.

    Google Scholar 

  • Wilier, M., Forrer, J., Keller, J., Van Doorsiaer, S., and Schweiger, A., 2000, S-band (2 – 4 GHz) pulse electron paramagnetic resonance spectrometer: Construction, probe head design, and performance. Rev. Sci. Instrum. 71, 2807–2817.

    Article  Google Scholar 

  • Wilmshurst, T. M., 1968, Electron Spin Resonance Spectrometers, Plenum Press, New York.

    Google Scholar 

  • Wilmshurst, T. K, 1990, Signal Recovery from Noise in Electronic Instrumentation, 2nd ed., Adam Hilger - IOP Publishing, page 87.

    Google Scholar 

  • Witowski, A. M., 1991, The Two-Phonon Spin-Lattice Relaxation Processes in High Magnetic Fields. Solid State Commun. 77: 23–27.

    Article  Google Scholar 

  • Witowski, A. M., Kutter, C, and Wyder, P., 1997, Spin-Lattic Relaxation at High Magnetic Fields: A Tool for Electron-Phonon Coupling Studies. Phys. Rev. Lett. 78: 3951–3954.

    Article  CAS  Google Scholar 

  • Yong, L., Harbridge, J., Quine, R. W., Rinard, G. A., Eaton, S. S., Eaton, G. R., Mailer, C, Barth, E., and Halpern, H. J., 2001, Electron Spin Relaxation of Triarylmethyl Radicals in Fluid Solution.J. Magn. Reson. 152, 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Zecevic, A., Eaton, G. R., Eaton, S. S., and Lindgren, M., 1998, Dephasing of Electron Spin Echoes for Nitroxyl Radicals in Glassy Solvents by Non-methyl and Methyl Protons, Mol. Phys. 95: 1255–1263.

    Article  CAS  Google Scholar 

  • Zhou, Y., Bowler, B. E., Eaton, G. R., and Eaton, S. S., 1999, Electron Spin Relaxation Rates for S =1/2 Molecular Species in Glassy Matrices or Magnetically-Dilute Solids at Temperatures Between 10 and 300 K. J. Magn. Reson. 139:165–174.

    Article  PubMed  CAS  Google Scholar 

  • Zypman, F. R., 1996, MRI Electromagnetic Field Penetration in Cylindrical Objects, Comput. Biol. Med. 26:161–175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rinard, G.A., Quine, R.W., Eaton, S.S., Eaton, G.R. (2004). Frequency Dependence of EPR Sensitivity. In: Berliner, L.J., Bender, C.J. (eds) EPR: Instrumental Methods. Biological Magnetic Resonance, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8951-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8951-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4733-0

  • Online ISBN: 978-1-4419-8951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics