Skip to main content

Integrated Multiscale Process Simulation in Microelectronics

  • Conference paper
  • 393 Accesses

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 136))

Abstract

We discuss selected applications of integrated multiscale process simulation (IMPS) that are particularly relevant to integrated circuit fabrication. We first summarize approaches to IMPS for two processes for which the governing equations are well accepted. In these cases, models for equipment scale (meter), pattern scale (mm) and feature scale (micron) are solved simultaneously. The first approach uses regular grids, and is applied to low-pressure chemical vapor deposition (LPCVD) of silicon dioxide from tetraethoxysilane (TEOS). The second approach uses unstructured meshes, and is applied to electrochemical deposition (ECD) of copper. The goal is to develop approaches to estimate “loading” in these processes; i.e., the effects of pattern density and topography on local deposition rates. This is accomplished by resolving pattern (mesoscopic, mm) scales, which are between equipment (0.1-1 m) and feature scales (0.1-1 μm). In this work, we focus on steady state simulation results. We close the discussion of deposition processes with a few thoughts on extending IMPS to the grain scale, and the conversion of discrete atomistic representations to continuum representations of islands during deposition. We end by discussing progress made towards IMPS for chemical mechanical planarization (CMP). In this example, well-accepted models or relevant simulators do not exist for any scale of the process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. International Technology Roadmap for Semiconductors, 1999 edition; (http://public.itrs.net/Files/1999_SIA_Roadmap/Home.htm).

  2. T.S. Cale, T.P. Merchant, L.J. Borucki, AND A.H. Labun, Topography simulation for the virtual wafer fab, Thin Solid Films, 365(2), 2000, pp. 152–175.

    Article  Google Scholar 

  3. T.S. Cale, B.R. Rogers, T.P. Merchant, AND L.J. Borucki, Deposition and Etch Processes: Continuum Film Evolution in Microelectronics, J. Comp. Mat. Sci., 12, 1998, pp. 333–353.

    Article  Google Scholar 

  4. Proceedings of the Fifth IUMRS International Conference on Advanced Materials, J. Comp. Aided Mats. Des., 6(2-3), 1999; Proceedings of the Sixth International IUMRS Conference on Advanced Materials, J. Comp. Mat. Sci., in press.

    Google Scholar 

  5. M.K. Gobbert, CA. Ringhofer, AND T.S. Cale, Mesoscopic scale modeling of microloading during low pressure chemical vapor deposition. J. Electrochem. Soc, 143(8), 1996, pp. 2624–2631.

    Article  Google Scholar 

  6. M.K. Gobbert, T.P. Merchant, L.J. Borucki, AND T.S. Cale, A multiscale simulator for low pressure chemical vapor deposition, J. Electrochem. Soc, 144(11), 1997, pp. 3945–3951.

    Article  Google Scholar 

  7. T.P. Merchant, M.K. Gobbert, T.S. Cale, AND L.J. Borucki, Multiple scale integrated modeling of deposition processes, Thin Solid Films, 365(2), 2000, pp. 368–375.

    Article  Google Scholar 

  8. M.E. Coltrin, P. Ho, H.K. Moffat, AND R.J. Buss, Chemical kinetics in chemical vapor deposition: growth of silicon dioxide from tetraethoxysilane (TEOS), Thin Solid Films, 365(2), 2000, pp. 251–263.

    Article  Google Scholar 

  9. R.J. Kee, F.M. Rupley, E. Meeks, AND J.A. Miller, CHEMKIN-III: A Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Sandia National Laboratories, Livermore, CA, 1996.

    Google Scholar 

  10. A.H. Labun, H. Moffat, AND T.S. Cale, Mechanistic feature scale profile simulation of SiO 2 LPCVD by TEOS pyrolysis, J. Vac. Sci. Technol., B18(l), 2000, pp. 267–272.

    Google Scholar 

  11. FIDAP 7.6, Fluent Inc., 500 Davis St. Suite 600, Evanston, IL 60201, 1996.

    Google Scholar 

  12. EVOLVE is a deposition, etch, and reflow process simulator developed under the direction of T.S. Cale. Copyright 1990-2000 by Timothy S. Cale.

    Google Scholar 

  13. C.H. Whiting AND K.E. Jansen, A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, International Journal of Numerical Methods in Fluids, 35, 2001, pp. 93–116.

    Article  MATH  Google Scholar 

  14. S. Soukane AND T.S. Cale, Proceedings of the Seventeenth International VLSI Multilevel Interconnection Conference, T. Wade, ed., IMIC, 2000, pp. 260.

    Google Scholar 

  15. J.O. Dukovic, Feature-scale simulation of resist-patterned electrodeposition, IBM J. Res. Develop., 37(2), 1993, pp. 125–141.

    Article  Google Scholar 

  16. D. Yang, J. Hong, AND T.S. Cale, Effects of process variables on Cu(TMVS)(hfac) sourced copper CVD films, in: Advanced Metallization Conference 1999, M.E. Gross, T. Gessner, N. Kobayashi, and Y. Yasuda, eds., MRS, 2000, pp. 207–211.

    Google Scholar 

  17. G.H. Gilmer, H. Huang, T.D. DE LA Rubia, J. Dalla Torre, AND F. Baumann, Lattice Monte Carlo models of thin film deposition, Thin Solid Films, 365(2), 2000, pp. 189–200.

    Article  Google Scholar 

  18. J.A. Sethian, Fast level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science, second ed., Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  19. T.J. Barth AND J.A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains, J. Comp. Phys., 145(1), 1998, pp. 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.F. Gyure, C. Ratsch, B. Merriman, R.E. Caflisch, S. Osher, J.J. Zinck, AND D.D. Vvedensky, Level-set methods for the simulation of epitaxial phenomena, Phys. Rev. E, 58(6), 1998, pp. R6927–R6930.

    Article  Google Scholar 

  21. D. Maroudas, M.N. Enmark, C.M. Leibig, AND S.T. Pantelides, Theory and computer simulation of microstructure evolution in poly crystalline metallic thin films, Proceedings of Fourth International Symposium on Process Physics and Modeling in Semiconductor Devices, 1996, pp. 249–260.

    Google Scholar 

  22. C.S. Hau-Riege AND C.V. Thompson, The effects of micro structural transitions at width transitions on interconnect reliability, J. Appl. Phys., 87(12), 2000, pp. 8467–8472.

    Article  Google Scholar 

  23. S.P. Murarka, J.M. Steigerwald, AND R.J. Gutmann, Inlaid copper multilevel interconnections using planarization by chemical-mechanical polishing, MRS Bulletin, 18(6), 1993, pp. 46–51.

    Google Scholar 

  24. R.S. Subramanian, L. Zhang, AND S.V. Babu, Transport phenomena in chemical mechanical polishing, J. Electrochem. Soc, 146(11), 1999, pp. 4263–4272.

    Article  Google Scholar 

  25. W.-T. Tseng, Y.-H. Wang, AND J.-H. Chin, Effects of film stress on the chemical mechanical polishing process, J. Electrochem. Soc, 146(11), 1999, pp. 4273–4280.

    Article  Google Scholar 

  26. S.R. Runnels, R. Miceli, AND I. Kim, Validation of a large area three-dimensional erosion simulator for chemical mechanical polishing, J. Electrochem. Soc, 146(12), 1999, pp. 4619–4625.

    Article  Google Scholar 

  27. C.-H. Yao, D.L. Feke, K.M. Robinson, AND S. Meikle, Modeling of chemical mechanical polishing processes using a discretized geometry approach, J. Electrochem. Soc, 147(4), 2000, pp. 1502–1512.

    Article  Google Scholar 

  28. J. Tichy, J. Levert, L. Shan, AND S. Danyluk, Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing, J. Electrochem. Soc, 146(4), 1999, pp. 1523–1528.

    Article  Google Scholar 

  29. J.A. Levert, A.R. Baker, F.M. Mess, R.F. Salant, S. Danyluk, AND L. Cook, STLE Tribology Trans., 41, 1998, p. 593.

    Article  Google Scholar 

  30. J.A. Levert, Interface Mechanics of Chemical Mechanical Polishing for Integrated Circuit Planarization, Ph.D. Thesis, Georgia Institute of Technology, 1997.

    Google Scholar 

  31. L. Shan, J.A. Levert, J. Tichy, AND S. Danyluk, Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing, J. of Trib., 122(3), 2000, pp. 539–543.

    Article  Google Scholar 

  32. J. Tichy, C. Clutz, AND T. Cale, CMP pad displacement and slurry flow characteristics’ finite element analysis, in Proceedings of the Fifth International Chemical Mechanical Polish for ULSI Multilevel Interconnection Conference, IMIC, 2000, pp. 222–228.

    Google Scholar 

  33. A.E. Green AND P.M. Naghdi, The flow of fluid through an elastic solid, Acta Mechanica, 9(3-4), 1970, pp. 329–340.

    Article  MATH  Google Scholar 

  34. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  35. C. Srinivasa-Murthy, D. Wang, S.P. Beaudoin, T. Bibby, K. Holland, AND T.S. Cale, Stress distribution in chemical mechanical polishing, Thin Solid Films, 308-309, 1997, pp. 533–537.

    Article  Google Scholar 

  36. B.J. Hamrock, Fundamentals of Fluid Film Lubrication, McGraw-Hill, 1994.

    Google Scholar 

  37. J.A. Greenwood AND J.B.P. Williamson, Proc Roy. Soc. London, A295, 1966, p. 300.

    Google Scholar 

  38. W.M. Lai, D. Rubin, AND E. Krempl, Continuum Mechanics, third edition, Pergamon, 1993.

    Google Scholar 

  39. ANSYS, Faculty/Research Release 5.6; ANSYS, Inc, Canonsburg PA, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Cale, T.S. et al. (2004). Integrated Multiscale Process Simulation in Microelectronics. In: Abdallah, N.B., et al. Dispersive Transport Equations and Multiscale Models. The IMA Volumes in Mathematics and its Applications, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8935-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8935-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6473-6

  • Online ISBN: 978-1-4419-8935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics