Integrated Multiscale Process Simulation in Microelectronics

  • Timothy S. Cale
  • Max O. Bloomfield
  • David F. Richards
  • Sofiane Soukane
  • Kenneth E. Jansent
  • John A. Tichy
  • Matthias K. Gobbert
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 136)


We discuss selected applications of integrated multiscale process simulation (IMPS) that are particularly relevant to integrated circuit fabrication. We first summarize approaches to IMPS for two processes for which the governing equations are well accepted. In these cases, models for equipment scale (meter), pattern scale (mm) and feature scale (micron) are solved simultaneously. The first approach uses regular grids, and is applied to low-pressure chemical vapor deposition (LPCVD) of silicon dioxide from tetraethoxysilane (TEOS). The second approach uses unstructured meshes, and is applied to electrochemical deposition (ECD) of copper. The goal is to develop approaches to estimate “loading” in these processes; i.e., the effects of pattern density and topography on local deposition rates. This is accomplished by resolving pattern (mesoscopic, mm) scales, which are between equipment (0.1-1 m) and feature scales (0.1-1 μm). In this work, we focus on steady state simulation results. We close the discussion of deposition processes with a few thoughts on extending IMPS to the grain scale, and the conversion of discrete atomistic representations to continuum representations of islands during deposition. We end by discussing progress made towards IMPS for chemical mechanical planarization (CMP). In this example, well-accepted models or relevant simulators do not exist for any scale of the process.


Feature Scale Mesoscale Model Chemical Mechanical Polishing Wafer Surface Reactor Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    International Technology Roadmap for Semiconductors, 1999 edition; (
  2. [2]
    T.S. Cale, T.P. Merchant, L.J. Borucki, AND A.H. Labun, Topography simulation for the virtual wafer fab, Thin Solid Films, 365(2), 2000, pp. 152–175.CrossRefGoogle Scholar
  3. [3]
    T.S. Cale, B.R. Rogers, T.P. Merchant, AND L.J. Borucki, Deposition and Etch Processes: Continuum Film Evolution in Microelectronics, J. Comp. Mat. Sci., 12, 1998, pp. 333–353.CrossRefGoogle Scholar
  4. [4]
    Proceedings of the Fifth IUMRS International Conference on Advanced Materials, J. Comp. Aided Mats. Des., 6(2-3), 1999; Proceedings of the Sixth International IUMRS Conference on Advanced Materials, J. Comp. Mat. Sci., in press.Google Scholar
  5. [5]
    M.K. Gobbert, CA. Ringhofer, AND T.S. Cale, Mesoscopic scale modeling of microloading during low pressure chemical vapor deposition. J. Electrochem. Soc, 143(8), 1996, pp. 2624–2631.CrossRefGoogle Scholar
  6. [6]
    M.K. Gobbert, T.P. Merchant, L.J. Borucki, AND T.S. Cale, A multiscale simulator for low pressure chemical vapor deposition, J. Electrochem. Soc, 144(11), 1997, pp. 3945–3951.CrossRefGoogle Scholar
  7. [7]
    T.P. Merchant, M.K. Gobbert, T.S. Cale, AND L.J. Borucki, Multiple scale integrated modeling of deposition processes, Thin Solid Films, 365(2), 2000, pp. 368–375.CrossRefGoogle Scholar
  8. [8]
    M.E. Coltrin, P. Ho, H.K. Moffat, AND R.J. Buss, Chemical kinetics in chemical vapor deposition: growth of silicon dioxide from tetraethoxysilane (TEOS), Thin Solid Films, 365(2), 2000, pp. 251–263.CrossRefGoogle Scholar
  9. [9]
    R.J. Kee, F.M. Rupley, E. Meeks, AND J.A. Miller, CHEMKIN-III: A Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Sandia National Laboratories, Livermore, CA, 1996.Google Scholar
  10. [10]
    A.H. Labun, H. Moffat, AND T.S. Cale, Mechanistic feature scale profile simulation of SiO 2 LPCVD by TEOS pyrolysis, J. Vac. Sci. Technol., B18(l), 2000, pp. 267–272.Google Scholar
  11. [11]
    FIDAP 7.6, Fluent Inc., 500 Davis St. Suite 600, Evanston, IL 60201, 1996.Google Scholar
  12. [12]
    EVOLVE is a deposition, etch, and reflow process simulator developed under the direction of T.S. Cale. Copyright 1990-2000 by Timothy S. Cale.Google Scholar
  13. [13]
    C.H. Whiting AND K.E. Jansen, A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, International Journal of Numerical Methods in Fluids, 35, 2001, pp. 93–116.MATHCrossRefGoogle Scholar
  14. [14]
    S. Soukane AND T.S. Cale, Proceedings of the Seventeenth International VLSI Multilevel Interconnection Conference, T. Wade, ed., IMIC, 2000, pp. 260.Google Scholar
  15. [15]
    J.O. Dukovic, Feature-scale simulation of resist-patterned electrodeposition, IBM J. Res. Develop., 37(2), 1993, pp. 125–141.CrossRefGoogle Scholar
  16. [16]
    D. Yang, J. Hong, AND T.S. Cale, Effects of process variables on Cu(TMVS)(hfac) sourced copper CVD films, in: Advanced Metallization Conference 1999, M.E. Gross, T. Gessner, N. Kobayashi, and Y. Yasuda, eds., MRS, 2000, pp. 207–211.Google Scholar
  17. [17]
    G.H. Gilmer, H. Huang, T.D. DE LA Rubia, J. Dalla Torre, AND F. Baumann, Lattice Monte Carlo models of thin film deposition, Thin Solid Films, 365(2), 2000, pp. 189–200.CrossRefGoogle Scholar
  18. [18]
    J.A. Sethian, Fast level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science, second ed., Cambridge University Press, Cambridge, 1999.MATHGoogle Scholar
  19. [19]
    T.J. Barth AND J.A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains, J. Comp. Phys., 145(1), 1998, pp. 1–40.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    M.F. Gyure, C. Ratsch, B. Merriman, R.E. Caflisch, S. Osher, J.J. Zinck, AND D.D. Vvedensky, Level-set methods for the simulation of epitaxial phenomena, Phys. Rev. E, 58(6), 1998, pp. R6927–R6930.CrossRefGoogle Scholar
  21. [21]
    D. Maroudas, M.N. Enmark, C.M. Leibig, AND S.T. Pantelides, Theory and computer simulation of microstructure evolution in poly crystalline metallic thin films, Proceedings of Fourth International Symposium on Process Physics and Modeling in Semiconductor Devices, 1996, pp. 249–260.Google Scholar
  22. [22]
    C.S. Hau-Riege AND C.V. Thompson, The effects of micro structural transitions at width transitions on interconnect reliability, J. Appl. Phys., 87(12), 2000, pp. 8467–8472.CrossRefGoogle Scholar
  23. [23]
    S.P. Murarka, J.M. Steigerwald, AND R.J. Gutmann, Inlaid copper multilevel interconnections using planarization by chemical-mechanical polishing, MRS Bulletin, 18(6), 1993, pp. 46–51.Google Scholar
  24. [24]
    R.S. Subramanian, L. Zhang, AND S.V. Babu, Transport phenomena in chemical mechanical polishing, J. Electrochem. Soc, 146(11), 1999, pp. 4263–4272.CrossRefGoogle Scholar
  25. [25]
    W.-T. Tseng, Y.-H. Wang, AND J.-H. Chin, Effects of film stress on the chemical mechanical polishing process, J. Electrochem. Soc, 146(11), 1999, pp. 4273–4280.CrossRefGoogle Scholar
  26. [26]
    S.R. Runnels, R. Miceli, AND I. Kim, Validation of a large area three-dimensional erosion simulator for chemical mechanical polishing, J. Electrochem. Soc, 146(12), 1999, pp. 4619–4625.CrossRefGoogle Scholar
  27. [27]
    C.-H. Yao, D.L. Feke, K.M. Robinson, AND S. Meikle, Modeling of chemical mechanical polishing processes using a discretized geometry approach, J. Electrochem. Soc, 147(4), 2000, pp. 1502–1512.CrossRefGoogle Scholar
  28. [28]
    J. Tichy, J. Levert, L. Shan, AND S. Danyluk, Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing, J. Electrochem. Soc, 146(4), 1999, pp. 1523–1528.CrossRefGoogle Scholar
  29. [29]
    J.A. Levert, A.R. Baker, F.M. Mess, R.F. Salant, S. Danyluk, AND L. Cook, STLE Tribology Trans., 41, 1998, p. 593.CrossRefGoogle Scholar
  30. [30]
    J.A. Levert, Interface Mechanics of Chemical Mechanical Polishing for Integrated Circuit Planarization, Ph.D. Thesis, Georgia Institute of Technology, 1997.Google Scholar
  31. [31]
    L. Shan, J.A. Levert, J. Tichy, AND S. Danyluk, Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing, J. of Trib., 122(3), 2000, pp. 539–543.CrossRefGoogle Scholar
  32. [32]
    J. Tichy, C. Clutz, AND T. Cale, CMP pad displacement and slurry flow characteristics’ finite element analysis, in Proceedings of the Fifth International Chemical Mechanical Polish for ULSI Multilevel Interconnection Conference, IMIC, 2000, pp. 222–228.Google Scholar
  33. [33]
    A.E. Green AND P.M. Naghdi, The flow of fluid through an elastic solid, Acta Mechanica, 9(3-4), 1970, pp. 329–340.MATHCrossRefGoogle Scholar
  34. [34]
    K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.MATHGoogle Scholar
  35. [35]
    C. Srinivasa-Murthy, D. Wang, S.P. Beaudoin, T. Bibby, K. Holland, AND T.S. Cale, Stress distribution in chemical mechanical polishing, Thin Solid Films, 308-309, 1997, pp. 533–537.CrossRefGoogle Scholar
  36. [36]
    B.J. Hamrock, Fundamentals of Fluid Film Lubrication, McGraw-Hill, 1994.Google Scholar
  37. [37]
    J.A. Greenwood AND J.B.P. Williamson, Proc Roy. Soc. London, A295, 1966, p. 300.Google Scholar
  38. [38]
    W.M. Lai, D. Rubin, AND E. Krempl, Continuum Mechanics, third edition, Pergamon, 1993.Google Scholar
  39. [39]
    ANSYS, Faculty/Research Release 5.6; ANSYS, Inc, Canonsburg PA, 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Timothy S. Cale
    • 1
  • Max O. Bloomfield
    • 1
  • David F. Richards
    • 1
  • Sofiane Soukane
    • 1
  • Kenneth E. Jansent
    • 2
  • John A. Tichy
    • 3
  • Matthias K. Gobbert
    • 4
  1. 1.Focus Center-New York: RensselaerRensselaer Polytechnic InstituteTroyUSA
  2. 2.Scientific Computation Research CenterRensselaer Polytechnic InstituteTroyUSA
  3. 3.Mechanical Engineering, Aeronautical Engineering and MechanicsRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of Mathematics and StatisticsUniversity of MarylandBaltimoreUSA

Personalised recommendations