Skip to main content

Nonresonant Smoothing for Coupled Wave + Transport Equations and the Vlasov-Maxwell System

  • Conference paper
Dispersive Transport Equations and Multiscale Models

Abstract

Consider a system (see (1.1) below) consisting of a linear wave equation coupled to a transport equation. Such a system is called nonresonant when the maximum speed for particles governed by the transport equation is less than the propagation speed in the wave equation. Velocity averages of solutions to such nonresonant coupled systems are shown to be more regular than those of either the wave or the transport equation alone. This smoothing mechanism is reminiscent of the proof of existence and uniqueness of C 1 solutions of the Vlasov-Maxwell system by Glassey-Strauss [9] for time intervals on which particle momenta remain uniformly bounded. Applications of our smoothing results to solutions of the Vlasov-Maxwell system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Bergé, L.; Bidegaray, B.; AND Colin, T. A perturbative analysis of the time envelope approximation in sttrong Langmuir turbulence. Phys. D 95 (1997), 351–379.

    Article  Google Scholar 

  2. Bogoliubov, N.N. AND Mitropolsky, Y.A. Asymptotic methods in the theory of non-linear oscillations. Translated from the second revised Russian edition. International Monographs on Advanced Mathematics and Physics Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York 1961.

    Google Scholar 

  3. Bouchut, F.; Golse, F.; AND Pallard, C. Work in preparation.

    Google Scholar 

  4. Bouchut, F.; Golse, F.; AND Pulvirenti, M. Kinetic Equations and Asymptotic Theory. L. Desvillettes & B. Perthame eds.. Series in Applied Mathematics, 4. Gauthier-Villars, Editions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam, 2000.

    Google Scholar 

  5. Dautray, R. AND Watteau, J. La fusion thermonucléaire inertielle par laser. Eyrolles, Paris 1993.

    Google Scholar 

  6. Diperna, R. AND Lions, P.-L. Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42 (1989), no. 6, 729–757.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fefferman, C. AND Stein, E.M. H p spaces of several variables. Acta Math. 129 (1972), no. 3-4, 137–193.

    Article  MathSciNet  MATH  Google Scholar 

  8. Glassey, Robert T. The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996

    Google Scholar 

  9. Glassey, Robert T. AND Strauss, Walter A. Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Rational Mech. Anal. 92 (1986), no. 1, 59–90.

    Article  MathSciNet  MATH  Google Scholar 

  10. Glassey, Robert T. AND Strauss, Walter A. High Velocity Particles in a Collisionless Plasma. Math. Meth. Appl. Sci. 9 (1987), 46–52.

    Article  MATH  Google Scholar 

  11. Glassey, Robert T. AND Strauss, Walter A. Absence of Schocks in an Initially Dilute Collisionless Plasma. Comm. Math. Phys. 113 (1987), 191–208.

    Article  MathSciNet  MATH  Google Scholar 

  12. Golse, F.; Perthame, B.; AND Sentis, R. Un résultat de compacité pour les équations de transport et application au calcul de la valeur propre principale d’un opérateur de transport. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 341–344.

    MathSciNet  MATH  Google Scholar 

  13. Golse, F.; Lions, P.-L.; Perthame, B.; AND Sentis, R. Regularity of the moments of the solution of a transport equation. J. of Funct. Anal. 76, (1988), 434–460.

    Article  MathSciNet  Google Scholar 

  14. Hö'rmander, L. Lectures on nonlinear hyperbolic differential equations. Mathématiques & Applications [Mathematics & Applications], 26. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  15. Klainerman, S. AND Machedon, M. Finite energy solutions of the Yang-Mills equations in R 3+1. Ann. of Math. (2)145, (1995), 39–119.

    Article  MathSciNet  Google Scholar 

  16. Klainerman, S. AND Staffilani, G. A new approach to study the Vlasov-Maxwell system, preprint.

    Google Scholar 

  17. Landau, L. AND Lifshitz, E. Cours de physique théorique. Vol. 2: Théorie des champs. Editions Mir, Moscou, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Bouchut, F., Golse, F., Pallard, C. (2004). Nonresonant Smoothing for Coupled Wave + Transport Equations and the Vlasov-Maxwell System. In: Abdallah, N.B., et al. Dispersive Transport Equations and Multiscale Models. The IMA Volumes in Mathematics and its Applications, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8935-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8935-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6473-6

  • Online ISBN: 978-1-4419-8935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics