Skip to main content

Increasing the Brain’s Capacity: Neocortex, New Neurons, and Hemispheric Specialization

  • Chapter
Comparative Vertebrate Cognition

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Brain size has been linked to cognitive capacity and intelligence, but this association is largely an intuitive assumption rather than one that has received unequivocal empirical support. This assumption has a long history dating back to the flurry of active measurement of the human brain in the 1800s, when “races” were ranked according to brain size and the assumed superiority of men over women was said to be couched in their larger brain size (Gould, 1981; Kaplan and Rogers, 1994, 2003). A similar line of thinking has been applied to non-human animals. Over many years, species have been ranked according to brain size, and now there is revived interest in doing so, especially in ranking species according to both brain size and cognitive abilities. It is timely, therefore, to see what light these studies, with emphasis on the recent ones, might shed on our topic of debate, “Are primates special in terms of their cognitive abilities?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew, R. J. and Rogers, L. J., 2002, The nature of lateralization in tetrapods, in: Comparative Vertebrate Lateralization, L. J. Rogers and R. J. Andrew, eds., Cambridge University Press, Cambridge, pp. 94–125.

    Chapter  Google Scholar 

  • Barton, R. A., 1996, Neocortex size and behavioural ecology, Proc. Roy. Soc. Lond.: B. 263:173–177.

    Article  Google Scholar 

  • Barton, R. A. and Harvey, P. H., 2000, Mosaic evolution of brain structure in mammals, Nature 405:1055–1058.

    Article  Google Scholar 

  • Bayer, S. A. and Altman, J., 1991, Neocortical Development, Raven Press, New York.

    Google Scholar 

  • Bennett, P. M. and Harvey, P. H., 1985, Relative brain size and ecology in birds, J. ZooL, Lond. 207:151–169.

    Article  Google Scholar 

  • Braitenberg, V. and Schiiz, A., 1998, Cortex: Statistics and Geometry of Neuronal Connectivity, Springer, Berlin.

    Google Scholar 

  • Byrne, R W. and Whiten, A., eds., 1988, Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans, Clarendon Press, Oxford.

    Google Scholar 

  • Cant, J. G. H., 1987, Positional behavior of female Bornean orang-utans (Pongo pygmaeus), Am.J. Primatol. 12:71–90.

    Article  Google Scholar 

  • Cantalupo, C. and Hopkins, W. D., 2001, Asymmetric Broca’s area in great apes: A region of the ape brain is uncannily similar to one linked with speech in humans, Nature 414:505.

    Article  Google Scholar 

  • Chevalier-Skolnikoff, S. and Liska, J., 1993, Tool use of wild and captive elephants, Anim. Behav. 46:209–219.

    Article  Google Scholar 

  • Clark, D. A., Mitra, P. P., and Wang, S-H., 2001, Scalable architecture in mammalian brains, Nature 411:189–193.

    Article  Google Scholar 

  • Clutton-Brock, T. H. and Harvey, P. H., 1980, Primates, brains and ecology, J. Zool., Lond. 190:309–323.

    Article  Google Scholar 

  • Connor, R. C, 1998, Quantifying brain-behavior relations in cetaceans and primates: Reply from R. C. Connor et al., TREE 13:408.

    Google Scholar 

  • Cowell, P. E. and Denenberg, V. H., 2002, Development of laterality and the role of the corpus callosum in rodents and humans, in: Comparative Vertebrate Lateralization, L. J. Rogers and R. J. Andrew, eds., Cambridge University Press, Cambridge, pp. 274–305.

    Chapter  Google Scholar 

  • Cowell, P. E., Waters, N. S., and Denenberg, V. H., 1997, The effects of early environment on the development of functional laterality in Morris maze performance, Laterality 2:221–232.

    Google Scholar 

  • Crow, T. J., ed., 2002, The Speciation of Modern Homo sapiens, Oxford University Press, Oxford.

    Google Scholar 

  • Deacon, T. W., 1997, The Symbolic Species: The Co-evolution of Language and the Brain, W. W. Norton & Co., New York.

    Google Scholar 

  • Deaner, R O., Nunn, CL., and van Schaik, CR, 2000, Comparative tests of primate cognition: Different scaling methods produce different results, Brain Behav. Evol. 55:44–52.

    Article  Google Scholar 

  • Delius, J. D., 1985, Cognitive processes in pigeons, in: Cognition, Information Processing and Motivation, G. D’Ydelvalle, ed., Elsevier, Amsterdam, pp. 3–18.

    Google Scholar 

  • Delius, J. D., 1987, Sapient sauropids and hollering hominids, in: Geneses of Language, W. Koch, ed., Brockmeyer, Bochum.

    Google Scholar 

  • Delius, J. D., Jitsumori, M., and Siemann, M., 2000, Stimulus equivalencies through discrimination reversals, in: The Evolution of Cognition, C Heyes and L. Huber, eds., The MIT Press, Cambridge, MA, pp. 103–122.

    Google Scholar 

  • Denenberg, V. H., 1981, Hemispheric laterality in animals and the effects of experience, Behav. Brain Sci. 4:1–49.

    Article  Google Scholar 

  • DeVoogd, T. J., Krebs, J. R, Healy, S. D., and Purvis, A., 1993, Relations between song repertoire size and the volume of brain nuclei related to song: Comparative evolutionary analyses amongst oscine birds, Proc. R. Soc. Lond. B 254:75–82.

    Article  Google Scholar 

  • Diamond, M. C, 1988, Enriching Heredity: The Impact of the Environment on the Anatomy of the Brain, The Free Press, New York.

    Google Scholar 

  • Dunbar, R. I. M., 1992, Neocortex size as a constraint on group size in primates, J. Hum. Evol. 20:469–193.

    Article  Google Scholar 

  • Dunbar, R I. M., 2000, Causal reasoning, mental rehearsal, and the evolution of primate cognition, in: The Evolution of Cognition, C. Heyes and L. Huber, eds., The MIT Press, Cambridge, pp. 205–219.

    Google Scholar 

  • Dunbar, R. I. M., 2001, Brains on two legs: Group size and the evolution of intelligence, in: Tree of Origin: What Primate Behavior Can Tell us about Human Social Evolution, F. B. de Waal, ed., Harvard University Press, Cambridge, pp. 174–191.

    Google Scholar 

  • Dunbar, R. I. M. and Bever, J., 1998, Neocortex size predicts group size in carnivores and some insectivores, Ethology 104:695–708.

    Article  Google Scholar 

  • Eccles, J. C, 1989, Evolution of the Brain: Creation of the Self, Roudedge, London.

    Google Scholar 

  • Falk, D., 1992, Brain Dance, Henry Holt, New York.

    Google Scholar 

  • Finlay, B. L., and Darlington, R.B., 1995, Linked regularities in the development and evolution of mammalian brains, Science 268:1578–1584.

    Article  Google Scholar 

  • Galdikas, B. M. F., 1982, Orang-utan tool use at Tajung Putting Reserve, Central Indonesian Borneo (Kalimantan Tengah), Hum. Evol. 10:19–33.

    Google Scholar 

  • Gannon, P. J., Holloway, R. L., Broadfieldd, D. C, and Braun, A. R, 1998, Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog, Science 2279:220–222.

    Article  Google Scholar 

  • Gazzaniga, M. S., 2000, Cerebral specialization and interhemispheric communication. Does the corpus callosum enable the human condition? Brain 123:1293–1326.

    Article  Google Scholar 

  • Gould, S. J., 1981, The Mismeasure of Man, Norton & Co., New York.

    Google Scholar 

  • Güintürkün, O., 2000, Asymmetry pays: Visual lateralization improves discrimination success in pigeons, Curr. Biol. 10:1079–1081.

    Article  Google Scholar 

  • Harvey, P. H. and Krebs, J. R, 1990, Comparing brains, Science 249:140–146.

    Article  Google Scholar 

  • Hook-Costigan, M. A. and Rogers, L.J., 1996, Hand preferences in New World primates, Int. J. Comp. Psychol. 9:173–207.

    Google Scholar 

  • Hook-Costigan, M. A., and Rogers, L. J., 1998, Eye preferences in common marmosets (Callithrix jacchus): Influence of age, stimulus and hand preference, Laterality 3:109–130.

    Google Scholar 

  • Hopkins, W. D. and Marino, L., 2000, Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI), Neuropsychologia 38:493–499.

    Article  Google Scholar 

  • Hopkins, W. D. and Rilling, J. K., 2000, A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: Implications for the evolution of functional asymmetries, Behav. Neurosci. 114:739–748.

    Article  Google Scholar 

  • Hopkins, W. D., Marino, L., Rilling, J. K., and MacGregor, L.A., 1998, Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI), NeuroReport 9:2913–2918.

    Article  Google Scholar 

  • Humphrey, N. K., 1976, The social function of intellect, in: Growing Points In Ethology, P. P. G. Bateson and R A. Hinde, eds., Cambridge University Press, Cambridge, pp. 303–317.

    Google Scholar 

  • Innocenti, G. M. and Kaas, J. H., 1995, The cortex, Trends Neurosci. 18:371–372.

    Article  Google Scholar 

  • Jerison, H. J., 1973, Evolution of Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J., 1976, Principles of the evolution of the brain and behavior, in: Evolution, Brain, and Behavior: Persistent Problems, R. B. Masterton, W. Hodos, and H. Jerison, eds., Lawerence Erlbaum Associates, Hillsdale, pp. 23–45.

    Google Scholar 

  • Jerison, H. J., 1994, Evolution of the brain, in: Neuropsychology, D. W. Zaidel, ed., Academic Press, San Diego, pp. 53–104.

    Google Scholar 

  • Jolly, A., 1966, Lemur social behavior and primate intelligence, Science 153:501–507.

    Article  Google Scholar 

  • Kaas, J. H., 1995, The evolution of the isocortex, Brain Behav. Evol. 46:187–196.

    Article  Google Scholar 

  • Kamin, L. J., 1977, The Science and Politics oflQ, Penguin, Harmondsworth.

    Google Scholar 

  • Kaplan, G. and Rogers, L. J., 1994, Race and gender fallacies: The paucity of biological determinist explanations of difference, in: Challenging Racism and Sexism, E. Tobach and B. Rosoff, eds., The Feminist Press, New York.

    Google Scholar 

  • Kaplan, G. and Rogers, L. J., 1999, The Orang-utans, Allen & Unwin, Sydney.

    Google Scholar 

  • Kaplan, G. and Rogers, L. J., 2001, Birds: Their Habits and Skills, Allen & Unwin, Sydney.

    Google Scholar 

  • Kaplan, G. and Rogers, L. J., 2003, Gene Worship: Moving Beyond the Nature/Nurture Debate Over Genes, Brain, and Gender, Otherpress, New York.

    Google Scholar 

  • Karten, H. J., 1991, Homology and evolutionary origins of the “neocortex,” Brain Behav. Evol 38:264–272.

    Article  Google Scholar 

  • Krebs, J. R, Clayton, N. S., Healy, S. D., Cristol, C. A., Patel, S. N., and Jolliffe, A. R, 1996, The ecology of the avian brain: Food-storing memory and hippocampus, Ibis 138:34–36.

    Google Scholar 

  • Krubitzer, L., 1995, The organization of the neocortex in mammals: Are species differences really so different? Trends Neurosci. 18:408–417.

    Article  Google Scholar 

  • Krubitzer, L., 1998, What can monotremes tell us about brain evolution? Phil. Trans. R. Soc. Lond. B 353:1127–1146.

    Article  Google Scholar 

  • Kudo, H. and Dunbar, R I. M., 2001, Neocortex size and social network size in primates, Anim. Behav. 62:711–722.

    Article  Google Scholar 

  • Lefebvre, L., Whittle, P., Lascaris, E., and Fikelstein, A., 1997, Feeding innovations and forebrain size in birds, Anim. Behav. 53:549–560.

    Article  Google Scholar 

  • Lefebvre, L., Gaxiola, A., Dawson, S., Timmermans, S., Rosza, L., and Kabai, P., 1998, Feeding innovations and forebrain size in Australasian birds, Behaviour 135:1077–1097.

    Article  Google Scholar 

  • Lefebrve, L. N., Nicolakakis, N., and Boire, D., 2002, Tools and brains in birds, Behaviour 139:939–973.

    Article  Google Scholar 

  • MacNeilage, P. F., Studdert-Kennedy, M. G., and Lindblom, B., 1987, Primate handedness reconsidered, Behav. Brain Sci. 11:748–758.

    Google Scholar 

  • Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R S. J., and Frith, C. D., 2000, Navigation-related structural change in the hippocampi of taxi drivers, Proc. Natl. Acad. Sci. USA 97:4398–4403.

    Article  Google Scholar 

  • Marino, L., 1996, What dolphins can tell us about primate evolution, Evol. Anthropol. 5:81–86.

    Article  Google Scholar 

  • Marino, L., 1998, A comparison of encephalization between odontocete cetaceans and anthropoid primates, Brain Behav. Evol. 51:230–238.

    Article  Google Scholar 

  • Marino, L., 2002, Convergence of complex cognitive abilities in cetaceans and primates, Brain Behav. Evol. 59:21–32.

    Article  Google Scholar 

  • McGrew, W. C. and Marchant, L. F, 1997, On the other hand: Current issues in and meta-analysis of the behavioral laterality of hand function in nonhuman primates, Tear Book Phys. Anthropol. 40:210–232.

    Google Scholar 

  • McGrew, W. C. and Marchant, L. E, 1999, Laterality of hand use pays off in foraging success for wild chimpanzees, Primates 40:509–513.

    Article  Google Scholar 

  • Nicolakakis, N. and Lefebvre, L., 2000, Forebrain size and innovation rate in European birds: Feeding, nesting and confounding variables, Behaviour 137:1415–1427.

    Article  Google Scholar 

  • Noble, W. and Davidson, L, 1996, Human Evolution, Language and Mind, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nordeen, E. J. and Yahr, P., 1982, Hemispheric asymmetries in the behavioural and hormonal effects of sexually differentiating mammalian brain, Science 218:391–394.

    Article  Google Scholar 

  • Northcutt, R. G. and Kaas, J., 1995, The emergence and evolution of mammalian cortex, Trends Neurosci. 18:373–379.

    Article  Google Scholar 

  • Nottebohm, F., 1971, Neural lateralization of vocal control in a passerine bird. I. Song, J. Exp. Zool. 177:229–261.

    Article  Google Scholar 

  • Nottebohm, F., 1989, From bird songs to neurogenesis, Sci. Am. Feb.:56–61.

    Google Scholar 

  • Palmer, A. R., 2002, Chimpanzee right handedness reconsidered: Evaluating the evidence with funnel plots, Am. J. Phys. Anthropol. 118:191–199.

    Article  Google Scholar 

  • Posthuma, D., De Geus, E. J. C, and Boomsma, D. I., 2001, Perceptual speed and IQ are associated through common genetic factors, Behav. Genet. 31:593–602.

    Article  Google Scholar 

  • Povinelli, D. and Cant, J. G., 1995, Arboreal clambering and the evolution of self-conception, Quart. Rev. Biol. 70:393–421.

    Article  Google Scholar 

  • Reader, S. M. and Laland, K. N., 2002, Social intelligence, innovation, and enhanced brain size in primates, Proc. Natl. Acad. Sci. USA 99:4436–4441.

    Article  Google Scholar 

  • Riddell, W. I. and Corl, K. G., 1977, Comparative investigation of the relationship between cerebral indices and learning abilities, Brain Behav. Evol. 14:385–398.

    Article  Google Scholar 

  • Rilling, J. K. and Insel, T. R, 1999a, The primate neocortex in comparative perspective using magnetic resonance imaging, Hum. Evol. 37:191–223.

    Article  Google Scholar 

  • Rilling, J. K. and Insel, T. R, 1999b, Differential expansion of neural projection systems in primate brain evolution, NeuroReport 10:1453–1459.

    Article  Google Scholar 

  • Rogers, L. J., 1997, Minds of their Own: Thinking and Awareness in Animals, Allen & Unwin, Sydney.

    Google Scholar 

  • Rogers, L. J., 2000, Evolution of hemispheric specialisation: Advantages and disadvantages, Brain Lang. 73:236–253.

    Article  Google Scholar 

  • Rogers, L. J., 2002, Lateralization in vertebrates: Its early evolution, general pattern, and development, in: Advances in the Study of Behavior, Vol. 31, P. J. B. Slater, J. S. Rosenblatt, C. T. Snowdon, and T. J. Roper, eds., Academic Press, San Diego.

    Google Scholar 

  • Rogers, L. J. and Andrew, R. J., eds., 2002, Comparative Vertebrate Lateralization, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rogers, L. J. and Anson, J. M., 1979, Lateralization of function in the chicken forebrain, Pharm. Biochem. Behav. 10:679–686.

    Article  Google Scholar 

  • Rogers, L. J. and Kaplan, G., 2003, Spirit of the Wild Dog, Allen & Unwin, Sydney.

    Google Scholar 

  • Rumbaugh, D. M., 1997, Competence, cortex, and primate models: A comparative primate perspective, in: Development of the Prefrontal Cortex: Evolution, Neurobiology, and Behavior, N. A. Krasnegor, G. R Lyon, and P. F. Goldman-Rakic, eds., Paul H. Brookes, Baltimore, MD, pp. 117–139.

    Google Scholar 

  • Rumbaugh, D. M., Beran, M. J., and Hillix, W. A., 2000, Cause-effect reasoning in humans and animals, in: The Evolution of Cognition, C. Heyes and L Huber, eds., The MIT Press, Cambridge, MA, pp. 221–238.

    Google Scholar 

  • Sanchez, M. M., Hearn, E. R, Do, D., Rilling, J. K., and Herndon, J. G., 1998, Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys, Brain Res. 812:38–49.

    Article  Google Scholar 

  • Sawaguchi, T., 1992, The size of the neocortex in relation to ecology and social structure in monkeys and apes, Folia Primatol. 58:131–145.

    Article  Google Scholar 

  • Semendeferi, K., Damasio, H., and Frank, R, 1997, The evolution of the frontal lobes: A volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains, Hum. Evol. 32:375–388.

    Article  Google Scholar 

  • Seyfarth, R M. and Cheney, D. L., 2002, What are big brains for? Proc. Natl. Acad. Sci. USA 99:4141–4142.

    Article  Google Scholar 

  • Stark, J. M. and Ricklefs, RE., eds., 1998, Avian Growth and Development, Oxford University Press, New York.

    Google Scholar 

  • Uttal, W. R, 2001, The New Prenology: The Limits of Localizing Cognitive Processes in the Brain, MIT Press, Cambridge, MA.

    Google Scholar 

  • Verstynen, T, Tierney, R, Urbanski, T, and Tang, A., 2001, Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat, Dev. Neurosci. 12:3019–3022.

    Google Scholar 

  • Ward, J. P. and Hopkins, W. D., eds., 1993, Primate Laterality, Springer-Verlag, N.Y.

    Google Scholar 

  • Whiten, A. and Bryne, R W., 1997, Machiavellian Intelligence II. Extensions and Evaluations, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Winter, de W. and Oxnard, C. E., 2001, Evolutionary radiations and convergences in the structural organization of mammalian brains, Nature 409:710–714.

    Article  Google Scholar 

  • Wittling, W., 1995, Brain asymmetry in the control of autonomic-physiologic activity, in: Brain Asymmetry, R J. Davidson and K. Hugdahl, eds., MIT Press, Cambridge, MA, pp. 305–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogers, L. (2004). Increasing the Brain’s Capacity: Neocortex, New Neurons, and Hemispheric Specialization. In: Rogers, L.J., Kaplan, G. (eds) Comparative Vertebrate Cognition. Developments in Primatology: Progress and Prospects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8913-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8913-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4717-0

  • Online ISBN: 978-1-4419-8913-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics