Skip to main content

Generation of photon number states by cavity quantum electrodynamics

  • Conference paper
  • 43 Accesses

Abstract

Recent widely discussed applications in quantum information and quantum cryptography require radiation sources able to produce a fixed number of photons. In this paper we review the work performed in our laboratory to produce such fields on demand. One setup described is based on the micromaser operated under the conditions of a trapping sate. The second device uses a single ion in an optical cavity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. H. Zbinden, N. Gisin, B. Huttner, and W. Tittel, “Practical aspects of quantum cryptographic key distribution,” J. Cryptol. 13, 207–220 (2000); H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050-2056 (1999).

    Article  MATH  Google Scholar 

  2. K. M. Gheri, C. Saavedra, P. Törmä, J. I. Cirac, and P. Zoller, “Entanglement engineering of one-photon wave packets using a single-atom source,” Phys. Rev. A 58 R2627–R2630 (1998); S. J. van Enk, J. I. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: a quantum optical implementation,” Phys. Rev. Lett. 78, 4293–4296 (1997); S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).

    Article  ADS  Google Scholar 

  3. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997); A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095-3096 (1993); S. Parkins and H. J. Kimble, “Quantum state transfer between motion and light,” J. Opt. B. 1, 496 (1999).

    Article  ADS  Google Scholar 

  4. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000); D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000); W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).

    Article  ADS  Google Scholar 

  5. The error tolerant quantum computing proposal by D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999) requires that a “quantum resource” be supplied on demand to facilitate computation. Such a source can be provided by the apparatus considered here. See also J. Preskill, “Plug-in quantum software,” Nature (London) 402, 357-358 (1999); D. Johnathon and M. B. Plenio, “Entanglement-assisted local manipulation of pure quantum states,” Phys. Rev. Lett. 83, 3566–3569 (1999).

    Article  ADS  Google Scholar 

  6. Sources of single atoms, such as the one described in this paper, are routinely employed for hypothetical tasks such as the creation of an atomic beam with arbitrary timing sequence or for the stabilisation of cavity states. For an example see, D. Vitali, P. Tombesi and G. Milburn, “Quantum-state protection in cavities,” Phys. Rev. A 57, 4930–4944 (1998).

    Article  ADS  Google Scholar 

  7. J. T. Höffges, H. W. Baldauf, W. Lange, and H. Walther, “Heterodyne measurement of the resonance fluorescence of a single ion,” J. Mod. Opt. 44, 1999–2010 (1997).

    Article  ADS  Google Scholar 

  8. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).

    Article  ADS  Google Scholar 

  9. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).

    Article  ADS  Google Scholar 

  10. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “Single-photon turnstile device,” Nature (London) 397, 500–503 (1999).

    Article  ADS  Google Scholar 

  11. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field,” Nature (London) 403, 743–746 (2000).

    Article  ADS  Google Scholar 

  12. M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, “Trapping states in the micromaser,” Phys. Rev. Lett. 82, 3795–3798 (1999).

    Article  ADS  Google Scholar 

  13. G. M. Meyer, H.-J. Briegel, and H. Walther, “Ion-trap laser,” Europhys. Lett. 37, 317–322 (1997).

    Article  ADS  Google Scholar 

  14. C. K. Law and J. H. Eberly, “Arbitrary control of a quantum electromagnetic field,” Phys. Rev. Lett. 76, 1055–1058 (1996); C. K. Law and H. J. Kimble, “Deterministic generation of a bit-steam of single-photon pulses,” J. Mod. Opt. 44, 2067-2074 (1997); P. Domokos, M. Brune, J. M. Raimond and S. Haroche, “Photon-number-state generation with a single two-level atom in a cavity: a proposal,” Eur. Phys. J. D 1, 1–4 (1998).

    Article  ADS  Google Scholar 

  15. A. Kuhn, M. Hennrich, T. Bondo, and G. Rempe, “Controlled generation of single photons from a strongly coupled atom-cavity system,” Appl. Phys. B 69, 373–377 (1999); P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature (London) 404, 365—368 (2000); J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (2000); C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons,” Science 287, 1447–1453 (2000).

    Article  ADS  Google Scholar 

  16. See, for example, M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

    Google Scholar 

  17. G. Rempe, F. Schmidt-Kaler, and H. Walther, “Observation of sub-Poissonian photon statistics in a micromaser,” Phys. Rev. Lett. 64, 2783–2786 (1990).

    Article  ADS  Google Scholar 

  18. G. Rempe, H. Walther, and N. Klein, “Observation of quantum collapse and revival in a one-atom maser,” Phys. Rev. Lett. 58, 353–356 (1987).

    Article  ADS  Google Scholar 

  19. B. Englert, M. Löffler, O. Benson, M. Weidinger, B. Varcoe, and H. Walther, “Entangled atoms in micromaser physics,” Fortschr. Phys, 46, 897–926 (1998).

    Article  Google Scholar 

  20. J. Krause, M. O. Scully, and H. Walther, “State reduction and |n>-state preparation in a high-Q micromaser Phys. Rev. A 36, 4547–4550 (1987).

    Article  ADS  Google Scholar 

  21. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400, 239–242 (1999).

    Article  ADS  Google Scholar 

  22. A detailed account of the simulations used in this paper and a comparison with ideal micromaser theory can be found in S. Brattke, B.-G. Englert, B. T. H. Varcoe, and H. Walther, “Fock states in a cyclically pumped one-atom maser,” J. Mod. Opt. 47, 2857–2867 (2000).

    MathSciNet  ADS  MATH  Google Scholar 

  23. S. Brattke et al., “Preparing Fock states in the micromaser,” Optics Express 8, 131–144 (2001).

    Article  ADS  Google Scholar 

  24. B. T. H. Varcoe, S. Brattke, and H. Walther, “Generation of Fock states in the micromaser,” J. Opt. B. 2, 154–157 (2000).

    Article  ADS  Google Scholar 

  25. Proposals such as the teleportation of an atomic state using multiple atomic beams would be substantially enhanced when atoms arrive on demand rather than by chance. See for example: L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. Haroche, “Teleportation of an atomic state between two cavities using nonlocal microwave fields,” Phys. Rev. A 50, R895–R898 (1994); J. I. Cirac and A. S. Parkins, “Schemes for atomic-state teleportation,” Phys. Rev. A 50, R4441-R4444 (1994); M. H. Y. Moussa, “Teleportation with identity interchange of quantum states,” Phys. Rev. A 55, R3287-R3290 (1997).

    Article  ADS  Google Scholar 

  26. H.-J. Briegel, B.-G. Englert, N. Sterpi, and H. Walther, “One-atom maser: statistics of detector clicks,” Phys. Rev. A 49, 2962–2985 (1994).

    Article  ADS  Google Scholar 

  27. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, “Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity,” Phys. Rev. Lett. 85, 4872–4875 (2000).

    Article  ADS  Google Scholar 

  28. F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion,” Phys. Rev. Lett. 58, 203–206 (1987).

    Article  ADS  Google Scholar 

  29. J. T. Höffges, H. W. Baldauf, T. Eichler, S. R. Helmfrid, and H. Walther, “Heterodyne measurement of the fluorescent radiation of a single trapped ion,” Opt. Comm. 133, 170–174 (1997).

    Article  ADS  Google Scholar 

  30. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing, a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).

    Article  ADS  Google Scholar 

  31. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Brattke, S., Guthöhrlein, G.R., Keller, M., Lange, W., Varcoe, B., Walther, H. (2003). Generation of photon number states by cavity quantum electrodynamics. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics