Skip to main content

Cavity QED with Strong Coupling — Toward the Deterministic Control of Quantum Dynamics

  • Conference paper
  • 106 Accesses

Abstract

Many of the current efforts to control the dynamics of individual quantum systems take place within the setting of cavity quantum electrodynamics (QED). The coupling of an atomic dipole to the mode of an optical resonator has historically produced important quantum effects in the regime of weak coupling between dipole and cavity mode; more recent experiments access the regime of strong coupling and begin to enable control of the quantum states of single atoms and single-photon fields through a coherent coupling that exceeds dissipative rates in the system. We briefly review the historicl path to strong coupling and the variety of experiments involving single-quantum cavity QED. Current achievements and future challenges are illustrated through further discussion of two ongoing experiments in out group: one pursuing quantum feedback to trap single atoms in a cavity mode with single photons, the other building capability for quantum logic by using a FORT to hold atoms within a cavity mode. [Note that the presentation on which this paper is based can be accessed at http://www.its.caltech.edu/qoptics/cqed.html]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. see Cavity Quantum Electrodynamics, ed. P. Berman, Academic Press, San Diego, 1994.

    Google Scholar 

  2. J. I. Cirac, S. J. Van Enk, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Scripta T76, 223 (1998).

    Article  ADS  Google Scholar 

  3. E. M. Purcell, Phys. Rev. 69, 6–81 (1946); K. H. Drexhage, in Progress in Optics (ed. E. Wolf), vol. XII, pp. 163-232, New York, Elsevier (1974).

    Article  Google Scholar 

  4. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948); P. Goy et al., Phys. Rev. Lett. 50, 1903 (1983); L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986); D. J. Heinzen and M. S. Feld, Phys. Rev. Lett. 59, 2623 (1987); Y. Zhu et al., Phys. Rev. Lett. 61, 1946 (1988); C. I. Sukenik et al., Phys. Rev. Lett. 70, 560(1995); S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997); U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549 (1998).

    Article  ADS  MATH  Google Scholar 

  5. E. A. Hinds, Adv. Atom. Mol. Opt. Phy. 28, 237 (1990).

    Article  ADS  Google Scholar 

  6. G. Gabrielse and H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985); R. Hulet, E. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985); F. diMartini et al., Phys. Rev. Lett. 59, 2955 (1987); D. Klepper and S. Haroche, Physics Today (January, 1989); D. Meschede, Phys. Reps. 211, 201 (1992); S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999).

    Article  ADS  Google Scholar 

  7. E. T. Jaynes and F. W. Cummings, P. IEEE 51, 89 (1963).

    Article  Google Scholar 

  8. J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, J. Opt. Soc. Am. B 1, 518 (1984).

    ADS  Google Scholar 

  9. For a textbook development of cavity QED basics, see S. Haroche, in Fundamental Systems in Quantum Optics, Les Houches Session LIII, eds. J. Dalibard, J.-M. Raimond, and J. Zinn-Justin, North-Holland, Amsterdam, 1992.

    Google Scholar 

  10. H. J. Kimble, Phys. Scripta T76, 127 (1998).

    Article  ADS  Google Scholar 

  11. See e.g. I. R. Senitzky, Phys. Rev. 128, 2864 (1962); H. Haken, Z. Phys. 181, 96 (1964); M. Lax, Phys. Rev. 145, 110 (1966); M. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208 (1967).

    Article  ADS  Google Scholar 

  12. E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R. J. Glauber, in Quantum Optics and Electronics (ed. C. de Witt, A. Blandin, and C. Cohen-Tanoudji), pp. 63-185, New York, Gordon and Breach (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. See e.g. the review article by L. A. Lugiato, Progress in Optics 21, 69 (1984).

    Article  Google Scholar 

  14. See H. J. Kimble in Cavity Quantum Electrodynamics, ed. P. Berman, Academic Press, San Diego, 1994.

    Google Scholar 

  15. For a scientific tutorial on microwave cavity QED see Pierre Meystre; “Cavity Quantum Optics and the Quantum Measurement Process,” Progress in Optics XXX, ed. E. Wolf (Elsevier Science Publishing, 1992).

    Google Scholar 

  16. S. Brattke, B. T. H. Varcoe, and H. Walther, Phys. Rev. Lett 86, 3534 (2001).

    Article  ADS  Google Scholar 

  17. G. Nogues et al., Nature 400, 239 (1999); P. Benet et al., Nature 411, 166 (2001).

    Article  ADS  Google Scholar 

  18. Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, Opt. Lett. 21, 1393 (1996).

    Article  ADS  Google Scholar 

  20. P. Munstermann et al., Phys. Rev. Lett. 82, 3791 (1999); P. W. H. Pinkse et al., Nature 404, 365 (2000).

    Article  ADS  Google Scholar 

  21. S. L. Mielke, G. T. Foster, and L. A. Orozco, Phys. Rev. Lett. 80 3948 (1998); G. T. Foster, S. L. Mielke, and L. A. Orozco, Phys. Rev. A 61 053821 (2000); G. T. Foster et al., Phys. Rev. Lett. 85, 3149 (2000).

    Article  ADS  Google Scholar 

  22. An et al., PRL 73, 3375 (1995); An and Feld, PRA 56, 1662(1997).

    Article  ADS  Google Scholar 

  23. H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED,” to appear in Proceedings of the First International Conference on Experimental Implementations of Quantum Computation (2001).

    Google Scholar 

  24. For several reviews of the field see “Optical Processes in Microcavities,” Y. Yamamoto and R. Slusher, Physics Today (June, 1993); Optical Proceses in Microcavities, ed. R. K. Chang and A. J. Campillo (World Scientific, 1996); G. Khitrova et al., Rev. Mod. Phys. 71, 1591 (1999).

    Google Scholar 

  25. T. Pellizzari, S. Gardiner, I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).

    Article  ADS  Google Scholar 

  26. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997).

    Article  ADS  Google Scholar 

  27. S. J. Van Enk, J. I. Cirac, and P. Zoller, Science 279, 205 (1998).

    Article  ADS  Google Scholar 

  28. C. J. Hood et al., Phys. Rev. Lett. 80, 4157 (1998).

    Article  ADS  Google Scholar 

  29. T. Kuga, described at http://photon.c.u-tokyo.ac.jp/

    Google Scholar 

  30. H. Mabuchi, J. Ye, and H. J. Kimble, Applied Phys. B68, 1095 (1999).

    ADS  Google Scholar 

  31. C. J. Hood, T. W. Lynn, A. Doherty. A. S. Parkins, and H. J. Kimble, Science 287, 1447 (2000).

    Article  ADS  Google Scholar 

  32. J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. 83, 4987 (1999).

    Article  ADS  Google Scholar 

  33. J. Ye, C. J. Hood, T. Lynn, H. Mabuchi, D. W. Vernooy, H. J. Kimble, IEEE Trans. on Inst. and Meas. 48, 608 (1999).

    Article  Google Scholar 

  34. S. Haroche, M. Brune, and J. M. Raimond, Europhys. Lett. 14, 19 (1991); B. G. Englert et al., Europhys. Lett. 14, 25 (1991); M. O. Scully et al., Phys. Rev. Lett. 76, 4144 (1996); A. C. Doherty et al., Phys. Rev. A 56, 833 (1997).

    Article  ADS  Google Scholar 

  35. A. C. Doherty, T. W. Lynn, C. J. Hood, and H. J. Kimble, Phys. Rev. A 63, 013401 (2001); available as quant-ph/0006015.

    Article  ADS  Google Scholar 

  36. H. Mabuchi, Phys. Rev. A 58, 123 (1998).

    Article  ADS  Google Scholar 

  37. D. W. Vernooy and H. J. Kimble, Phys. Rev. A 56, 4287 (1997).

    Article  ADS  Google Scholar 

  38. S. J. van Enk, J. McKeever, H. J. Kimble, and J. Ye, Phys. Rev. A 64, 013407 (2001); available as quant-ph/0005133.

    Article  ADS  Google Scholar 

  39. T. A. Savard, K. M. O’Hara and J. E. Thomas, Phys. Rev. A 56, R1095 (1997).

    Article  ADS  Google Scholar 

  40. C. W. Gardiner, J. Ye, C. Nägerl and H. J. Kimble, Phys. Rev. A 61, 045801 (2000).

    Article  ADS  Google Scholar 

  41. A. Gillespie and F. Raab, Phys. Lett. A 178, 357 (1993).

    Article  ADS  Google Scholar 

  42. H. J. Kimble, C. J. Hood, T. W. Lynn, H. Mabuchi, D. W. Vernooy, and J. Ye in Laser Spec-troscopy: XIV International Conference, eds. Rainer Blatt, et al. (World Scientific, Singapore, 1999).

    Google Scholar 

  43. Y. Hadjar Y, P. F. Cohadon, C. G. Aminoff, M. Pinard, and A. Heidmann, Europhys. Lett. 47, 545 (1999); F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).

    Article  ADS  Google Scholar 

  44. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Muller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, and N. F. de Rooij, Phys. Rev. A 59, 1038 (1999).

    Article  ADS  Google Scholar 

  45. P. Meystre, E. Schumacher, and S. Stenholm, Opt. Comm. 73, 443 (1989); W. Ren and H. J. Carmichael, Phys. Rev. A 51 752 (1995); M. O. Scully, G. M. Meyer, and H. Walther, Phys. Rev. Lett. 76 4144 (1996); A. M. Herkommer, H. J. Carmichael, and W. P. Schleich, Quant. Semiclass. Opt. 8 189 (1996); A. C. Doherty et al., Phys. Rev. A 57, 4804 (1998).

    Article  ADS  Google Scholar 

  46. C. J. Hood, H. J. Kimble, and J. Ye, Phys. Rev. A 64 033804 (2001); available as quant-ph/0101103.

    Article  ADS  Google Scholar 

  47. A. S. Parkins and H. J. Kimble, J. Opt. B — Quant. Semiclass. Opt. 1, 496 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Kimble, H.J., Lynn, T.W. (2003). Cavity QED with Strong Coupling — Toward the Deterministic Control of Quantum Dynamics. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics