Wave-particle correlations of non-classical light

  • G. T. Foster
  • L. A. Orozco
  • J. E. Reiner
  • W. P. Smith
  • H. J. Carmichael
  • P. R. Rice
Conference paper


We present our investigations of a third order correlation function of the electromagnetic field. The correlation function is subject to Schwartz inequalities and under conditions where third-order moments of the noise are negligible is the Fourier transform of the spectrum of squeezing. We present measurements and calculations of this correlation function in a strongly coupled system of cavity QED that produces non-classical light.


Correlation Function Signal Beam Optical Bistability Cavity Quantum Electrodynamic Standard Quantum Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. 1.
    R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light.” Nature 177, 27 (1956).CrossRefGoogle Scholar
  2. 2.
    Squeezed States of the Electromagnetic Field, edited by H. J. Kimble and D. F. Walls, special issue of J. Opt. Soc. Am. B 4, 1450 (1987).Google Scholar
  3. 3.
    Squeezed Light, edited by R. Loudon and P. L. Knight, special issue of J. Mod. Opt. 34, 709 (1987).Google Scholar
  4. 4.
    G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics.” Phys. Rev. Lett. 67, 1727 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    S. L. Mielke, G. T. Foster, and L. A. Orozco “Non-classical Intensity Correlations in Cavity QED.” Phys. Rev. Lett. 80, 3948 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    G. T. Foster, S. L. Mielke, and L. A. Orozco “Intensity correlations in cavity QED.” Phys. Rev. A 61, 53821 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    M. G. Raizen, L. A. Orozco, M. Xiao, M., T. L. Boyd, and H. J. Kimble, “Squeezed-state generat ion by the normal modes of a coupled system.” Phys. Rev. Lett. 59, 198 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    L. A. Orozco, M. G. Raizen, Min Xiao, R. J. Brecha, and H. J. Kimble, “Squeezed State Generation in Optical Bistability.” J. Opt. Soc. Am. B 4, 1490 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    D. M. Hope, H. A. Bachor, D. E. McClelland, and A. Stevenson, “The Atom-Cavity System as a Generator of Quadrature Squeezed States.” Appl. Phys. B 55, 210 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    H. J. Carmichael, H. Castro Beltran, G. T. Foster, and L. A. Orozco, “Giant Violations of Classical Inequalities Through Conditional Homodyne Detection of the Quadrature Amplitudes of Light.” Phys. Rev. Lett. 85, 1855 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, “Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations.” Phys. Rev. Lett. 85, 3149 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, New York, 1995).Google Scholar
  13. 13.
    B. Yurke and D. Stoler, “Measurement of Amplitude Probability-Distributions for Photon Number Operator Eigenstates.” Phys. Rev. A 36, 1955 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State.” Phys, Rev. Lett. 87, 050402 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wave-function in cavity QED.” Opt. Comm. 82, 73 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    P. Berman, ed., Cavity Quantum Electrodynamics, Supplement 2 of Advances in Atomic, Molecular and Optical Physics series (Academic Press, Boston, 1994).Google Scholar
  17. 17.
    L. A. Lugiato, “Theory of Optical Bistability”, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1984), Vol. XXI, p. 69–216.Google Scholar
  18. 18.
    G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche “Seeing a single photon without destroying it.” Nature 400, 239 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche “Step-by-step engineered multiparticle entanglement.” Science 288, 2024 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field.” Nature 403, 743 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, “Trapping states in the micromaser.” Phys. Rev. Lett. 82, 3795 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    C. J. Hood, R. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, “The atom-cavity microscope: single atoms bound in orbit by single photons.” Science 287, 1447 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons.” Nature 404, 365 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    A. C. Doherty, T. W. Lynn, C. J. Hood, and H. J. Kimble, “Trapping of Single Atoms with Single Photons in Cavity QED.” Phys. Rev. A 63, 013401 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    E. T. Jaynes, F. W. Cummings, “Comparison of Quantum and Semiclassical radiation Theories with Application to the Beam Maser.” Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  26. 26.
    J. E. Reiner, W. P. Smith, L. A. Orozco, H. J. Carmichael, P. R. Rice, “Time evolution and squeezing of the field amplitude in cavity QED.” To appear in J. Opt. Soc. Am. B (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • G. T. Foster
    • 1
  • L. A. Orozco
    • 1
  • J. E. Reiner
    • 1
  • W. P. Smith
    • 2
  • H. J. Carmichael
    • 3
  • P. R. Rice
    • 4
  1. 1.Department of Physics and AstronomySUNYSBStony BrookUSA
  2. 2.Department of PhysicsUniversity of OregonEugeneUSA
  3. 3.Department of PhysicsMiami UniversityOxfordUSA
  4. 4.Dept. PhysicsYale UniversityNew HavenUSA

Personalised recommendations