Advertisement

Parametric Down-Conversion: The Twins are born for a Life of Entanglement

  • Z. Y. Ou
Conference paper

Abstract

The existence of quantum entanglement is what makes quantum physics different from classical physics. First introduced by Schrödinger in his discussion of the famous cat paradox [1], the amazing effects of quantum entanglement are very counter-intuitive and sometimes mind-boggling. As a pioneer and an expert in both classical and quantum coherence theory, Mandel is the right person to use light for the exploration of quantum entanglement. Among many of Mandel’s contributions, the pioneering work and subsequent development on parametric down-conversion (PDC) opened up a whole field of research to experimentally observe the phenomena of quantum entanglement. Today, in the newly established field of quantum information science, quantum entanglement has become an essential ingredient in basically all the discussions. Schrödinger may have been the first person to mention the word of “Entanglement”, but it was Mandel who first demonstrated it experimentally and created further a variety of different entangled states, which include entangled states of polarization, of frequency, and of phase variables. Besides quantum entanglement, Mandel also exploited PDC in the study of fundamental physics as well as practical applications in optical communication.

Keywords

Entangle State Beam Splitter Quantum Entanglement Pump Field Quantum Information Science 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Schrödinger, Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935).ADSCrossRefGoogle Scholar
  2. [2]
    H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).ADSCrossRefGoogle Scholar
  3. [3]
    R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).ADSCrossRefGoogle Scholar
  4. [4]
    D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).ADSCrossRefGoogle Scholar
  5. [6]
    S. R. Friberg, C. K. Hong, and L. Mandel, Phys. Rev. Lett. 54, 2011 (1984).ADSCrossRefGoogle Scholar
  6. [7]
    C. K. Hong and L. Mandel, Phys. Rev. A 31, 2409 (1985).ADSCrossRefGoogle Scholar
  7. [8]
    S. R. Friberg, C. K. Hong, and L. Mandel, Opt. Comm. 54, 311 (1985).ADSCrossRefGoogle Scholar
  8. [9]
    C. K. Hong, S. R. Friberg, and L. Mandel, Appl. Opt. 24, 3877 (1985).ADSCrossRefGoogle Scholar
  9. [10]
    C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).ADSCrossRefGoogle Scholar
  10. [11]
    G. Magyar and L. Mandel, Nature (London) 198, 255 (1963).ADSCrossRefGoogle Scholar
  11. [12]
    R. L. Pfleegor and L. Mandel, Phys. Rev. 159, 1084 (1967).ADSCrossRefGoogle Scholar
  12. [13]
    L. Mandel, Phys. Rev. A28, 929 (1983).MathSciNetADSCrossRefGoogle Scholar
  13. [14]
    R. Ghosh, C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. A34, 3962 (1986).ADSCrossRefGoogle Scholar
  14. [15]
    R. Ghosh and L. Mandel, Phys. Rev. Lett. 59, 1903 (1987).ADSCrossRefGoogle Scholar
  15. [16]
    Z. Y. Ou, C. K. Hong, and L. Mandel, Phys. Lett. 122A, 11 (1987).CrossRefGoogle Scholar
  16. [17]
    M. S. Chubarov and E. P. Nikolayev, Phys. Lett. 110A, 199 (1985).MathSciNetCrossRefGoogle Scholar
  17. [18]
    Z. Y. Ou, C. K. Hong, and L. Mandel, Opt. Comm. 63, 118 (1987).ADSCrossRefGoogle Scholar
  18. [19]
    C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).ADSCrossRefGoogle Scholar
  19. [20]
    Y. Miyamoto, T. Kuga, M. Baba, and M. Matsuoka, Opt. Lett., 18, 900 (1993).ADSCrossRefGoogle Scholar
  20. [21]
    A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993)ADSCrossRefGoogle Scholar
  21. [22]
    M. A. Home, A. Shimony, and A. Zeilinger, Phys, Rev. Lett. 62, 2209 (1989).ADSCrossRefGoogle Scholar
  22. [23]
    P. Grangier, M. J. Polasek, and B. Yurke, Phys. Rev. A38, 3132 (1988).ADSCrossRefGoogle Scholar
  23. [24]
    Z. Y. Ou, L. J. Wang, and L. Mandel, Phys. Rev. A 40, 1428 (1989).ADSCrossRefGoogle Scholar
  24. [25]
    Z. Y. Ou, L. J. Wang, X.Y. Zou, and L. Mandel, Phys. Rev. A 41, 566 (1990).ADSCrossRefGoogle Scholar
  25. [26]
    Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 61, 50 (1988).MathSciNetADSCrossRefGoogle Scholar
  26. [27]
    Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 61, 2921 (1988).ADSCrossRefGoogle Scholar
  27. [28]
    Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 61, 54 (1988).MathSciNetADSCrossRefGoogle Scholar
  28. [29]
    J. D. Franson, Phys. Rev. Lett. 62 2205 (1989).ADSCrossRefGoogle Scholar
  29. [30]
    Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).ADSCrossRefGoogle Scholar
  30. [31]
    Z. Y. Ou, X.Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. A 42, 2957 (1990).ADSCrossRefGoogle Scholar
  31. [32]
    J. G. Rarity et al., Phys. Rev. Lett. 65, 1348 (1990).ADSCrossRefGoogle Scholar
  32. [33]
    A. N. Boto et al., Phys. Rev. Lett. 85, 2733 (2000); M. D’Angelo et al., Phys. Rev. Lett. 87, 013602 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Z. Y. Ou
    • 1
  1. 1.Department of PhysicsIndiana University-Purdue University IndianapolisIndianapolis

Personalised recommendations