Skip to main content

Sub-diffraction-limited resolution with squeezed light

  • Conference paper
Coherence and Quantum Optics VIII

Abstract

We discuss a possibility of achieving sub-diffraction-limited resolution in coherent optical imaging using multimode squeezed light. For this purpose, we formulate a quantum theory of superresolution for object reconstruction in terms of prolate spheroidal functions. We derive the expression for ultimate resolution limit in the reconstructed object using an illumination of the full object plane by a multimode squeezed vacuum. We show that the gain in superresolution using multimode squeezed light is maximum when the Shannon number S of the imaging system is smaller than unity. This situation is realized, for example, in scanning microscopy. We present some preliminary numerical simulations aiming to demonstrate the feasibility of significant superresolution for S < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999).

    Article  ADS  Google Scholar 

  2. L. A. Lugiato, M. Brambilla, and A. Gatti, in Advances in Atomic, Molecular, and Optical Physics, Vol. 40, edited by B. Bederson and H. Walther (Academic, Boston, 1999), p. 229.

    Google Scholar 

  3. A. Gatti, E. Brambilla, M. I. Kolobov, L. A. Lugiato, J. Opt. B: Quant. Semiclass. Opt. 2, 196 (2000).

    Article  ADS  Google Scholar 

  4. C. Fabre, J. B. Fouet, and A. Maître, Opt. Lett. 25, 76 (2000).

    Article  ADS  Google Scholar 

  5. M. I. Kolobov and C. Fabre, Phys. Rev. Lett. 85, 3789, (2000).

    Article  ADS  Google Scholar 

  6. N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maître, H. Bachor, C. Fabre, “Crossing the standard quantum limit for high-sensitivity measurements in optical images using non-classical light”, submitted to Nature (2001).

    Google Scholar 

  7. J. Rayleigh, in Collected Optics Papers of Lord Rayleigh, part A, (Opt. Soc. Am., Washington, 1994), p. 117.

    Google Scholar 

  8. A. Flock and D. Strelioff, Nature, 310, 397 (1984).

    Article  Google Scholar 

  9. J. J. Art, A. C. Craftford, and R. Fettiplace, J. Physiol. (London) 371, 18P (1986).

    Google Scholar 

  10. S. Kamimura, Appl. Opt. 26, 3425 (1987).

    Article  ADS  Google Scholar 

  11. W. Denk and W. W. Webb, Appl. Opt. 29, 2382 (1990).

    Article  ADS  Google Scholar 

  12. J. Jelles, B. J. Schnapp, and M. P. Scheetz, Nature, 331, 450 (1988).

    Article  ADS  Google Scholar 

  13. D. Fournier, A. Boccara, N. Amer, and R. Gerlach, Appl. Phys. Lett. 37, 519 (1980).

    Article  ADS  Google Scholar 

  14. C. Putman, B. De Grooth, N. Van Hulst, and J. Greve, J. Appl. Phys. 72, 6 (1992).

    Article  ADS  Google Scholar 

  15. M. Bertero, and E. R. Pike, Opt. Acta 29, 727 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Bertero, P. Boccacci, and E. R. Pike, Opt. Acta 29, 1599 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Bertero, P. Brianzi, P. Parker, and E. R. Pike, Opt. Acta 31, 181 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Bertero, C. De Mol, E. R. Pike, and J. G. Walker Opt. Acta 31, 923 (1984).

    Article  ADS  Google Scholar 

  19. J.G. Walker, E. R. Pike, and M. Bertero, British patent89/13129 (6 July 1989).

    Google Scholar 

  20. R. E. Davies, Ph. D. dissertation (Department of Physics, King’s College, University of London, 1990).

    Google Scholar 

  21. M. Bertero, and C. De Mol, in Progress in Optics Vol. XXXVI, edited by E. Wolf (North-Holland, Amsterdam, 1996), p. 129.

    Google Scholar 

  22. D. Slepian and H. O. Pollak, Bell System Tech. J. 40, 43 (1961)

    MathSciNet  MATH  Google Scholar 

  23. B. R. Frieden, in Progress in Optics Vol. IX, edited by E. Wolf (North-Holland, Amsterdam, 1971), p.311.

    Google Scholar 

  24. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).

    Google Scholar 

  25. W. P. Latham and M. Tilton, Appl. Opt. 26, 2658 (1987).

    Article  ADS  Google Scholar 

  26. B. Carnahan, H. A. Luther and J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 1969), p. 100.

    MATH  Google Scholar 

  27. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes (Fortran Version) (Cambridge University Press, Cambridge, 1989), p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Kolobov, M.I., Fabre, C., Scotto, P., Colet, P., Miguel, M.S. (2003). Sub-diffraction-limited resolution with squeezed light. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics