Skip to main content

Quantum Dot Single Photon Source

  • Conference paper

Abstract

Single photon sources play a key role in quantum communication and computation schemes. Using pulsed laser excitation of a single quantum dot (QD), a single photon source that generates a train of single photon pulses is demonstrated. Generated photon pulses have a vanishing probability for detection of two or more photons. For a spectrally isolated self-assembled InAs QD, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single photon source. The QD single-exciton (1X) resonance that generates the single-photon pulses can be resonantly coupled to a high quality factor microdisk whispering gallery mode (WGM), by varying the sample temperature. We demonstrate exciton lifetime reduction by a factor of 2 due to the Purcell effect, on resonance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and links

  1. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  2. C. H. Bennett, G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proc. IEEE Int. Conference on Computers, Systems and Signal Processing, 175 (IEEE, New York, 1984).

    Google Scholar 

  3. E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46 (2001).

    Article  ADS  Google Scholar 

  4. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, Lidong Zhang, E. Hu, and A. Irnamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282 (2000).

    Article  ADS  Google Scholar 

  5. A. Irnamoğlu, Y. Yamamoto, “Turnstile device for heralded single photons: coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions,” Phys. Rev. Lett. 72, 210 (1994).

    Article  ADS  Google Scholar 

  6. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, “Triggered source of single photons based on single molecule fuorescence,” Phys. Rev. Lett. 83, 2722 (1999).

    Article  ADS  Google Scholar 

  7. B. Lounis, W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature (London) 407, 491 (2000).

    Article  ADS  Google Scholar 

  8. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).

    Article  ADS  Google Scholar 

  9. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294 (2000).

    Article  ADS  Google Scholar 

  10. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoğlu, Lidong Zhang, E. Hu, W.V. Schoenfeld, and P.M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932 (2001).

    Article  ADS  Google Scholar 

  11. D. F. Walls, G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  12. R. Hanbury Brown, R. Q. Twiss, “Question of correlation between photons in coherent light rays,” Nature (London) 178, 1447 (1956).

    Article  ADS  Google Scholar 

  13. H. J. Kimble, M. Dagenais, L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691 (1977).

    Article  ADS  Google Scholar 

  14. F. Diedrich, H. Walther, “Nonclassical radiation of a single storedion,” Phys. Rev. Lett. 58, 203 (1987).

    Article  ADS  Google Scholar 

  15. Th. Basché, W. E. Moerner, M. Orrit, H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516 (1992).

    Article  ADS  Google Scholar 

  16. P. Michler, A. Irnamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968 (2000).

    Article  ADS  Google Scholar 

  17. C. Becher, A. Kiraz, P. Michler, A. Imamoğlu, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63, 121312(R) (2001).

    Article  ADS  Google Scholar 

  18. J.-M. Gérard, B. Gayral, “Strong Purcell effect for quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089 (1999).

    Article  ADS  Google Scholar 

  19. P. Michler, A. Kiraz, Lidong Zhang, C. Becher, E. Hu, A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).

    Article  ADS  Google Scholar 

  20. J. M. Garcia, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, ”Electronic states tuning of InAs self-assembled quantum dots,“ Appl. Phys. Lett. 72, 3172 (1998).

    Article  ADS  Google Scholar 

  21. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, J. L. Merz, “State filling and time-resolved photoluminescence of excited states in InxGa1-xAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, 11548 (1996).

    Article  ADS  Google Scholar 

  22. A. Imamoğlu, H. Schmidt, G. Woods, M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467 (1997).

    Article  ADS  Google Scholar 

  23. E. Dekel, D. V. Regelman, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, P. M. Petroff, “Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy,” Phys. Rev. B 62, 11038 (2000).

    Article  ADS  Google Scholar 

  24. D.V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic Press, London, 1984).

    Google Scholar 

  25. G. Bacher, R. Weigand, J. Seufert, V.D. Kulakovskii, N.A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Kiraz, A. et al. (2003). Quantum Dot Single Photon Source. In: Bigelow, N.P., Eberly, J.H., Stroud, C.R., Walmsley, I.A. (eds) Coherence and Quantum Optics VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8907-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8907-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4715-6

  • Online ISBN: 978-1-4419-8907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics