Techniques for the Investigation of Age-Related Bone Loss and Osteoporosis in Archaeological Bone

  • Megan B. Brickley
  • Sabrina C. Agarwal


With increasing awareness of age-related bone loss and osteoporosis in modern Western populations, a growing number of studies have set out to investigate whether individuals in the past were similarly affected (Martin and Armelagos, 1979; Bennike and Bohr, 1990; Lees et al., 1993; Agarwal and Grynpas, 1996; Brickley and Howell, 1999; Drusini et al., 2000; Mays, 2000). Research has demonstrated that age-related bone loss and osteoporosis results in changes to cortical bone (Derisquebourg et al., 1994), structural changes to trabecular bone (at a gross and microscopic level [Jayasinghe, 1994]), and bone mass and density (Cummings et al., 1993). Bone turnover and age-related bone loss are highly complex processes (see Chapters 1 and 2, this volume). The interaction between bone loss in both cortical and trabecular bone throughout the skeleton allows a variety of possible approaches to the study of bone loss. A range of techniques have been developed, each of which allows assessment of a different aspect of bone loss. Although this area has generated a great deal of recent interest, the epidemiology of age-related bone loss and fragility fractures, both in clinical and archaeological contexts, is unclear. The history of the development of the disease is not yet fully understood and a range of possibilities is currently being explored. For example, (1994) suggest that increasing bone loss may be an evolutionary trend (see also Chapter 8, this volume).


Bone Mineral Density Bone Loss Cortical Bone Trabecular Bone Fragility Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, S.C. (2001). The influence of age and sex on trabecular architecture and bone mineral density in three British historical populations. Doctoral thesis, University of Toronto, Toronto.Google Scholar
  2. Agarwal, S.C. and Grynpas, M.D. (1996). Bone quantity and quality in past population. Anal. Rec. 249, 423–432.CrossRefGoogle Scholar
  3. Agarwal, S.C., Dimitriu, M., and Grynpas, M.D. (in press). Medieval trabecular bone architecture: The influence of age, sex and lifestyle. Am. J. Phys. Anthropol. Google Scholar
  4. Amling, M., Herden, S., Pösl, M., Hahn, M., Ritzel, H., and Delling, G. (1996). Heterogeneity of the skeleton: Comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J. Bone Miner. Res. 11, 36–45.CrossRefGoogle Scholar
  5. Aufderheide, A.C. and Rodriguez-Martin, C. (1998). The Cambridge Encyclopedia of Human Paleopathology. Cambridge University Press, Cambridge.Google Scholar
  6. Banse, X., Devogelaer, J.P., Munting, E., Delloye, C., Cornu, O., and Grynpas, M. (2001). Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 28, 563–571.CrossRefGoogle Scholar
  7. Barnett, E. and Nordin, B.E.C. (1960). The radiological diagnosis of osteoporosis: A new approach. Clin. Radiol. 11, 166–174.CrossRefGoogle Scholar
  8. Bell. L.S. (1990). Palaeopathology and diagenesis: An evaluation of structural changes using backscattered electron imaging. J. Arch. Sci. 17, 85–102.CrossRefGoogle Scholar
  9. Bennike, P. and Bohr, H. (1990). Bone mineral content in the past and present. In C. Christiansen and K. Overgaard (eds) Third International Symposium on Osteoporosis. Osteopress. Copenhagen, pp. 89–91.Google Scholar
  10. Bergot, C., Laval-Jeantet, A.M., Preteux, F., and Meunier, A. (1988). Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif. Tissue Int. 43, 143–149.CrossRefGoogle Scholar
  11. Bland, J.S., Brooks. D.H., Kent, D.J., and Fisher, W.H. (1989). Evaluation of the clinical significance of appendicular skeletal assessment by radiographie photodensitomistry. J. Manipulative Physiol. Ther. 12, 113–119.Google Scholar
  12. Brickley, M. (1998). Age-related bone loss and osteoporosis in archaeological bone: A study of two London collections. Redcross Way and Farringdon Street. Doctoral thesis, University of London. London.Google Scholar
  13. Brickley, M. (2000). The diagnosis of metabolic bone disease in archaeological bone. In M. Cox and S. Mays (eds) Human Osteology in Archaeology and Forensic Science. Greenwich Medical Media, London, pp. 183–198.Google Scholar
  14. Brickley, M. (2002). Recognition and understanding of age-related bone loss and osteoporosis-related fractures in the eighteenth and nineteenth centuries. In R. Arnott (ed.) The Archaeology of Medicine. British Archaeological Reports, British Series, Oxford, pp. 141–146.Google Scholar
  15. Brickley, M. (2002b). An investigation of historical and archaeological evidence for age-related bone loss and osteoporosis. Int. J. Osleoarchaeol. 12, 364–371.CrossRefGoogle Scholar
  16. Brickley, M. and Howell, P.G.T. (1999). Measurement of changes in trabecular bone structure with age in an archaeological population. J. Arch. Sci. 26. 151–157.CrossRefGoogle Scholar
  17. Brickley, M. and Waldron, T. (1998). Relationship between bone density and osteoarthritis in a skeletal population from London. Bone 22(3), 279–283.CrossRefGoogle Scholar
  18. Burr, D.B., Ruff, C.B., and Thompson, D.D. (1990). Patterns of skeletal histological change through time: Comparison of an archaic native American population with modern populations. Anat. Rec. 26. 307–313.CrossRefGoogle Scholar
  19. Carter, D.R., Bouxsein, M.L., and Marcus, R. (1992). New approaches for interpreting projected bone densitometry data. J. Bone Miner. Res. 7, 137–145.CrossRefGoogle Scholar
  20. Compston, J.E. (1994). Connectivity of cancellous bone: Assessment and mechanical implications. Bone 15. 463–466.CrossRefGoogle Scholar
  21. Compston, J.E. (1995). Bone density: BMC, BMD, or corrected BMD? Bone 16, 5–7.Google Scholar
  22. Compston, J.E., Mellish, R.W., and Garrahan, N.J. (1987). Age-related changes in iliac crest trabecular microanatomic bone structure in man. Bone 8, 289–292.CrossRefGoogle Scholar
  23. Cook, M., Molto, E., and Anderson, C. (1988). Possible case of hyperparathyroidism in a Roman period skeleton from the Dakhleh Oasis. Egypt, diagnosed using bone histomorphometry. Am. J. Phvs. Anthropol. 75, 23–30.CrossRefGoogle Scholar
  24. Croucher, P.I., Garrahan, N.J., and Compston, J.E. (1996). Assessment of cancellous bone structure: Comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume. J. Bone Miner. Res. 11, 955–961.CrossRefGoogle Scholar
  25. Cummings, S.R., Black, D.M., Nevitt, M.C., Browner, W., Cauley, J., Ensrud, J., Genant, H.K., Palermo, L. et al. (1993). Bone density at various sites for prediction of hip fractures. Lancet 341, 72–75.CrossRefGoogle Scholar
  26. Dargent, P. and Breart, G. (1993). Epidemiology and risk factors of osteoporosis. Curr. Opin. Rheumatol. 5. 339–345.CrossRefGoogle Scholar
  27. Dequeker, J., Ortner, D.J., Stix, A.I., Cheng, X., Brys, P., and Boonen, S. (1997). Hip fracture and osteoporosis in a Xllth dynasty female skeleton from Lisht, Upper Egypt. J. Bone Miner. Res. 12, 881–888.CrossRefGoogle Scholar
  28. Derisquebourg, T., Dubois, P., Devogelaer, J., Duquesnoy, B., Nagent de Deuxchaisnes, C., Delcambre, B., and Marchandis, X. ( 1994). Automated computerized radiogrammetry of the second metacarpal and its correlation with absorptiometry of forearm and spine. Calcif. Tissue Int. 54, 461–465.CrossRefGoogle Scholar
  29. Drusini, A.G., Bredaroil, S., Carrara, N., and Bonati, M. (2000). Cortical bone dynamics and age-related osteopenia in a Longobard archaeological sample from three graveyards of the Veneto Region (Northeast Italy). Int. J. Osteoarchaeol. 10, 268–279.CrossRefGoogle Scholar
  30. Ebbesen, E.N., Thomsen, J.S., Beck-Nielsen, H., Nepper-Rasmussen, H.J., and Mosekilde, L. (1998). Vertebral bone density evaluated by dual energy X-ray absorptiometry and quantitative computed tomography in vitro. Bone 23, 283–290.Google Scholar
  31. Ekenman, I., Eriksson, A., and Lindgren, J. (1995). Bone density in Medieval skeletons. Calcif. Tissue Int. 56, 355–358.CrossRefGoogle Scholar
  32. Ericksen, M.F. (1980). Patteras of microscopic bone remodelling in three aboriginal American populations. In D.L. Brownman (ed.) Early Native Americans: Prehistoric Demography, Economy, and Technology. Houton, The Hague, pp. 239–270.Google Scholar
  33. Farquharson, M.J. (1996). Characterisation of Bone Tissue Using Coherently Scattered X-ray Photons. Doctoral thesis, University of London, London.Google Scholar
  34. Farquharson, M.J. and Brickley, M. (1997). Determination of mineral composition of archaeological bone using energy-dipersive low-angle X-ray scattering. Int. J. Osteoarchaeol. 7, 95–99.CrossRefGoogle Scholar
  35. Foldes, A.J., Moscovici, A., Popovtzer, M.M., Mogle, P., Urman, D., and Zias, J. (1995). Extreme osteoporosis in a sixth century skeleton from the Negev desert. Int. J. Osteoarchaeol. 5, 157–362.CrossRefGoogle Scholar
  36. Frigo, P. and Lang, C. (1995). Osteoporosis in a woman of the Early Bronze Age. N. Engl. J. Med. 333, 1468.CrossRefGoogle Scholar
  37. Gallagher, J.C. (1990). The pathogenesis of osteoporosis. Bone Miner. 9, 215–227.CrossRefGoogle Scholar
  38. Garrahan, N.J., Mellish, R.W., and Compston, J.E. (1986). A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J. Microsc. 142, 341–349.CrossRefGoogle Scholar
  39. Genant, H.K., Engelke, K., Fuerst, T., Gluer, C.C., Grampp, S., Harris, S.T., Jergas, M., Lang, T. et al. (1996). Noninvasive assessment of bone mineral and structure: State of the art. J. Bone. Miner. Res. 11, 707–730.CrossRefGoogle Scholar
  40. Geraets, W.G., Van der Stelt, P.F., and Elders, P.J. (1993). The radiographie trabecular bone pattern during menopause. Bone 14, 859–864.CrossRefGoogle Scholar
  41. Gordon, C.L., Lang, T.F., Augat, P., and Genant, H.K. (1998). Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos. Int. 8, 317–325.CrossRefGoogle Scholar
  42. Grampp, S., Jergas, M., Gluer, C.C., Lang, P., and Genant, H.K. (1993). Radiologie diagnosis of osteoporosis. Current methods and perspectives. Radiol. Clin. North Am. 31, 1133–1145.Google Scholar
  43. Grynpas, M.D., Acito, A., Dimitriu, M., Mertz, B.P., and Very, J.M. (1992). Changes in bone mineralization, architecture and mechanical properties due to long-term ( 1 year) administration of pamidronate (APD) to adult dogs. Osteoporos. Int. 2, 74–81.CrossRefGoogle Scholar
  44. Grynpas, M.D., Kasra, M., Dumitriu, M., Nespeca, R., Very, J.M., and Mertz, B.P. (1994). Recovery from pamidronate (APD): A two-year study in the dog. Calcif. Tissue Int. 55, 288–294.CrossRefGoogle Scholar
  45. Hadberg, L. and Nilsson, B.E. (1977). Can fracture of the femoral neck be predicted? Geriatrics 32, 55–61.Google Scholar
  46. Ives, R.A. (2002). An investigation of metacarpal radiogrammetry and age-related cortical bone loss in Post-Medieval London Collections. M.Phil, thesis, The University of Birmingham, Birmingham, UK.Google Scholar
  47. Jackes, M. (2000). Building the bases for paleodemographic analysis: Adult age determination. In M.A. Katzenberg and S.R. Saunders (eds) Biological Anthropology of the Human Skeleton. Wiley-Liss, New York, pp. 417–466.Google Scholar
  48. Jayasinghe, J.A.P. (1991). A study of change in human trabecular bone structure with age and during osteoporosis. Doctoral thesis, University of London, London.Google Scholar
  49. Jayasinghe, J.A.P., Jones, S.J., and Boyde, A. (1994). Three-dimensional photographic study of cancellous bone in human fourth lumbar vertebral bodies. Anat. & Embryol. (Berl.) 189, 259–274.Google Scholar
  50. Jergas, M., Breitsenseher, M., Gluer, C.C., Yu, W., and Genant, H.K. (1995). Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J. Bone Miner. Res. 10, 1101–1110.CrossRefGoogle Scholar
  51. Jergas, M. and Genant, H.K. (1993). Current methods and recent advances in the diagnosis of osteoporosis. Arthritis Rheum. 36, 1649–1662.CrossRefGoogle Scholar
  52. Kanis, J.A. (1994). Osteoporosis. Blackwell Scientific Publications, Oxford.Google Scholar
  53. Kawashima, T. and Uhthoff, H.K. (1991). Pattern of bone loss of the proximal femur: A radiologie, densitometric and histomorphometric study. J. Orthop. Res. 9, 634–640.CrossRefGoogle Scholar
  54. Kleerekoper, M., Villanueva, A.R., Staneiu, J., Sudhaker Rao, D., and Parfitt, A.M. (1985). The role of threedimensional trabecular mico-structure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 37, 594–597.CrossRefGoogle Scholar
  55. Kneissel, M., Boyde, A., Hahn, M., Treschler-Nicola, M., Kalchhauser, G., Plenk, H., Jr. (1994). Age-and sexdependent cancellous bone changes in a 4000y BP population. Bone 15, 539–545.CrossRefGoogle Scholar
  56. Korstjens, C.M., Spruijt, R.J., Geraets, W.G., Mosekilde, L., and Van der Stelt, P.F. (1997). Reliability of an image analysis system for quantifying the radiographie trabecular pattern [letter]. IEEE Trans. Med. Imaging 16, 230–234.CrossRefGoogle Scholar
  57. Korstjens, C.M., Spruijt, R.J., Mosekilde, L., Geraets, W.G., and Van der Stelt, P.F. (1998). Agreement between radiographie and photographic trabecular patterns. Acta. Radiol. 39, 625–631.CrossRefGoogle Scholar
  58. Kruse, H.I.P. and Kuhlencordt, F. (1983). Studies in primary osteoporosis. In A. St John Dixon, R.G.G. Russell, and T.C.B. Stamp (eds) Osteoporosis, A Multi-Disciplinary Problem. Academic Press, London, pp. 149–152.Google Scholar
  59. Lapedes, D.N. (ed.) (1978). Mc Graw-Hill Encyclopaedia of the Geological Sciences. McGraw-Hill Inc., New York, pp. 153–155.Google Scholar
  60. Laughlin, W.S., Harper, A.B., and Thompson, D.D. (1979). New approaches to the pre-and post-contact history of Arctic peoples. Am. J. Phys, Anthropol. 51, 579–587.CrossRefGoogle Scholar
  61. Lees, B., Molleson, T., Arnett, T.R., and Stevenson, J.C. (1993). Differences in proximal femur bone density over two centuries. Lancet 341, 673–675.CrossRefGoogle Scholar
  62. Lundon, K., Dumitriu, M., and Grynpas, M.D. (1997). Supraphysiologic levels of testosterone affect cancellous and cortical bone in young female cynomolgus monkey. Calcif. Tissue Int. 60, 54–62.CrossRefGoogle Scholar
  63. Martin, D.L. and Armelagos, G.J. (1979). Morphometrics of compact bone: An example from Sudanese Nubia. Am. J. Phys. Anthropol. 51, 571–578.CrossRefGoogle Scholar
  64. Martin, D.L. and Armelagos, G.J. (1985). Skeletal remodeling and mineralisation as indicators of health: An example from prehistoric Sudanese Nubia. J. Hum. Evol. 14(5), 527–537.CrossRefGoogle Scholar
  65. Mays, S.A. (1996). Age-dependent cortical bone loss in a Medieval population. Int. J. Osteoarchaeol. 6, 144-154. Mays, S. (2000). Age dependent cortical bone loss in women from 18th and early 19th century London. Am. J. Phys. Anthropol. 112(3), 349–362.CrossRefGoogle Scholar
  66. Mays, S. (2001). Effects of age and occupation on cortical bone in a group of 18th-19th century British Men. Am. J. Phys. Anthropol. 116, 34–44.CrossRefGoogle Scholar
  67. Mays, S., Lees, B., and Stevenson, J. (1998). Age-dependent bone loss in the femur in a medieval population. Int. J. Osteoarchaeol. 8, 97–106.CrossRefGoogle Scholar
  68. Meema, H.E. and Meema, S. (1987). Postmenopausal osteoporosis: Simple screening method for diagnosis before structural failure. Radiology 164, 405–410.Google Scholar
  69. Mellish, R.W.E., Ferguson-Pell, M.W., Cochran, G.V.B., Lindsay, R., and Dempster, D.W. (1991). A new manual method for assessing two-dimensional cancellous bone structure: Comparison between iliac crest and lumbar vertebra. J. Bone Miner. Res. 6, 689–696.CrossRefGoogle Scholar
  70. Melton, J.L, III, Chrischilles, E.A., Cooper, C., Lane, A.W., and Riggs, L.B. (1992). Perspective, how many women have osteoporosis. J. Bone Miner. Res. 7, 1005–1010.CrossRefGoogle Scholar
  71. Mielke, J.H., Armelagos, G.J., and Van Gerven, D.P. (1972). Trabecular involution in femoral heads of a prehistoric (X-Group) population from Sudanese Nubia. Am. J. Phys. Anthropol. 36(1), 39–44.CrossRefGoogle Scholar
  72. Mosekilde, L. (1988). Age-related changes in vertebral trabecular bone architecture, assessed by a new method. Bone 9, 247–250.CrossRefGoogle Scholar
  73. Mosekilde, L. (1989). Sex differences in age-related loss of vertebral trabecular mass and structure— biomechanical consequences. Bone 10, 425–432.CrossRefGoogle Scholar
  74. Mosekilde, L. (1993). Vertebral structure and strength in vivo and in vitro. Calcif. Tissue. Int. 53(Suppl 1), S121–S125.CrossRefGoogle Scholar
  75. Neese, R.M. and Williams, G.C. (1994). Why We Get Sick. Times Books, New York.Google Scholar
  76. Nelson, D.A. and Koo, W.W.K. (1999). Interpretation of absorptiometric bone mass measurements in the growing skeleton: Issues and limitations. Calcif. Tissue Int. 65, 1–3.CrossRefGoogle Scholar
  77. Ortner, D.J. and Putschar, W.G.J. (1985). Identification of Pathological Conditions in Human Skeletal Remains (2nd edn.). Smithsonian Institution Press, Washington.Google Scholar
  78. Ott, S.M., O’Hanlan, M., Lipkin, E.W., and Newell-Morris, L. (1997). Evaluation of vertebral volumetric vs. aerial bone mineral density during growth. Bone 20, 553–556.CrossRefGoogle Scholar
  79. Parfitt, A.M. (1992). Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13(Suppl 2), S41–S47.CrossRefGoogle Scholar
  80. Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., and Recker, R.R. (1987). Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610.CrossRefGoogle Scholar
  81. Pate, F.D. and Brown, K.A. (1985). The stability of bone strontium in the geochemical environment. J. Hum. Evol. 14, 483–491.CrossRefGoogle Scholar
  82. Peel, N. and Eastell, R. (1995). ABC of rheumatology: Osteoporosis. Brit. Med. J. 15, 310 (6985), 989-992.Google Scholar
  83. Pfeiffer, S. (2000). Paleohistology: Health and disease. In A. Katzenberg and S. Saunders (eds) Biological Anthropology of the Human Skeleton. Wilry-Liss, New York, pp. 287–302.Google Scholar
  84. Poulsen, L.W., Qvesel, D., Brixen, K., Vesterby, A., and Boldsen, J.L. (2001). Low bone mineral density in the femoral neck of medieval women: A result of multiparity? Bone 28, 454–458.CrossRefGoogle Scholar
  85. Richman, E.A., Ortner, D.J., and Schulter-Ellis, F.P. (1979). Differences in intracortical bone remodeling in three aboriginal American populations: Possible dietary factors. Calcif. Tissue Int. 28, 209–214.CrossRefGoogle Scholar
  86. Roberts, C. (2000). Trauma in biocultural perspective: Past, present and future work in Britain. In M. Cox and S. Mays (eds) Human Osteology in Archaeology and Forensic Science. Greenwich Medical Media, London, pp. 337–356.Google Scholar
  87. Roberts, C. and Manchester, K. (1995). The Archaeology of Disease 2nd edn. Cornell University press, New York.Google Scholar
  88. Roberts, C. and Wakely, J. (1992). Microscopical findings associated with the diagnosis of osteoporosis in palaeopathology. Int. J. Osteoarchaeol. 2, 23–30.CrossRefGoogle Scholar
  89. Ross, H.F. (1986). A new comparator for SEM Stereophotogrammetry. Scanning 8, 216–220.CrossRefGoogle Scholar
  90. Sambrook, P.N., Browne, C.D., Eisman, J.A., and Bourke, S.J. (1988). A case of crash fracture osteoporosis from late Roman Pella in Jordan. OSSA 13, 167–171.Google Scholar
  91. Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.Google Scholar
  92. Singh, M., Nagrath, A.R., and Maini, P.S. (1970). Changes in the trabecular pattern of the upper end of the femur as an index of osteoporosis. J. Bone Joint Surg. Br. 52a, 457–467.Google Scholar
  93. Sneed, N.V. and Van Bree, K.M. (1990). Treating ununited fractures with electricity: Nursing implications. J. Gerentol. Nursing 16, 26–31.Google Scholar
  94. Stout, S.D. (1983). The application of histomorphometric analysis to ancient skeletal remains. Anthropos (Greece), 10, 60–71.Google Scholar
  95. Stout, S.D. (1989). Histomorphometric analysis of human skeletal remains. In M. Iscan and K. Kennedy (eds) Reconstruction of Life from the Skeleton. Alan R Liss, New York, pp. 41–52.Google Scholar
  96. Stout, S.D. and Lueck, R. (1995). Bone remodeling rates and skeletal maturation in three archaeological skeletal populations. Am. J. Phys. Anthropol. 93, 123–129.CrossRefGoogle Scholar
  97. Stout, S. and Simmons, D.J. (1979). Use of histology in ancient bone research. Yearbook of Phys. Anthropol. pp. 228–249.Google Scholar
  98. Spector, T.D. (1991). The epidemiology of osteoporosis. In J.C. Stevenson (ed.) Osteoporosis. Reed Healthcare, Guildford, pp. 7–9.Google Scholar
  99. Thompson, D.D. and Gunness-Hey, M.E. (1981). Bone mineral-osteon analysis of Yupik-Inupiaq skeletons. Am. J. Phys. Anthropol. 55(1), 1–7.CrossRefGoogle Scholar
  100. Thompson, P.W. (1991). Assessment of the skeleton. In J.C. Stevenson (ed.) Osteoporosis. Reed Healthcare, Guildford, pp. 19–22.Google Scholar
  101. Thomsen, J.S., Ebbesen, E.N., and Mosekilde, L. (2000). A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone. Bone 27, 129–138.CrossRefGoogle Scholar
  102. Twomey, L., Taylor, J., and Furniss, B. (1983). Age changes in the bone density and structure of the lumbar vertebral column. J. Anat. 136, 15–25.Google Scholar
  103. Weaver, D. (1998). Osteoporosis in the bioarchaeology of women. In A.L. Grauer and P. Stuart-Macadam (eds) Sex and Gender in Paleopathological Perspective. Cambridge University Press, Cambridge, pp. 27–44.Google Scholar
  104. Weinstein, R.S., Simmons, D.J., and Lovejoy, C.O. (1981). Ancient bone disease in a peruvian mummy revealed by quantitative skeletal histomorphometry. Am. J. Phys. Anthropol. 54, 321–326.CrossRefGoogle Scholar
  105. Woolf, A.D. and St John Dixon, A. (1988). Osteoporosis a Clinical Guide. M. Dunitz, London.Google Scholar
  106. World Health Organisation. (1994). Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO study group, WHO technical report series 843. WHO, Geneva.Google Scholar
  107. Vesterby, A. (1990). Star volume of marrow space and trabeculae in iliac crest: Sampling procedure and correlation to star volume of first lumbar vertebra. Bone 11, 149–155.CrossRefGoogle Scholar
  108. Vesterby, A., Mosekilde. L., Gundersen, H.J., Meisen, F., Mosekilde, L., Holme, K., and Sorensen, S. (1991). Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12, 219–224.CrossRefGoogle Scholar
  109. Virtama, P. and Helelä, X (1969). Radiographic measures of cortical bone. Variations in a normal population between 1 and 90 years of age. Acta Radiol. Suppl. 293. Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Megan B. Brickley
    • 1
  • Sabrina C. Agarwal
    • 2
  1. 1.Institute of Archaeology and AntiquityUniversity of BirminghamUSA
  2. 2.Department of AnthropologyUniversity of TorontoCanada

Personalised recommendations