Skip to main content

Intercellular Communication and Bladder Function

  • Chapter
Bladder Disease, Part A

Abstract

Urinary incontinence resulting from abnormal bladder function is an extremely common problem affecting millions of men and women around the globe. Many diseases, such as stroke, diabetes mellitus, and benign prostatic hyperplasia (BPH), as well as the ravages of advancing age, contribute to altered bladder function. While urinary incontinence is clearly a multifactorial disease, one prevalent manifestation, known as urge incontinence, is related to uncontrolled and involuntary bladder contractions (i.e., bladder overactivity). This overactivity is the result of increased detrusor smooth muscle contractions. The precise physiological mechanisms contributing to the overactive bladder are not clearly understood. However, two different hypotheses, myogenic4 and neurogenic,21 have been advanced. The extant clinical and laboratory data support both hypotheses, but this report will focus exclusively on myogenic considerations. However, it should be emphasized that regardless of the precise etiologic cause of bladder hyperactivity, the physiological impact is the same; detrusor myocytes contract spontaneously, causing urinary incontinence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson KE: Advances in the pharmacological control of the bladder. Experimental Biology, 84:195, 1999.

    CAS  Google Scholar 

  2. Bennett MR: Autonomic Neuromuscular Transmission. Monographs of the Physiological Society. London: Cambridge University Press, 1972.

    Google Scholar 

  3. Brading AF: Ion channels and control of contractile activity in urinary bladder smooth muscle. Jpn J Pharmacol, 58(Suppl 2):120P, 1992.

    PubMed  CAS  Google Scholar 

  4. Brading AF: A myogenic basis for the overactive bladder. Urology, 50(Suppl 6A):57, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Brading AF, Inoue R: Ion channels and excitatory transmission in the smooth muscle of the urinary bladder. Z Kardiol, 80(Suppl 7):47, 1991.

    PubMed  Google Scholar 

  6. Brading AF, Mostwin JL: Electrical and mechanical responses of guinea-pig bladder muscle to nerve stimulation. Br J Pharmacol, 98(4):1083, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Bramich NJ, Brading AF: Electrical properties of smooth muscle in the guinea-pig urinary bladder. J Physiol, 492.1:185, 1996.

    Google Scholar 

  8. Berggren T, Andersson KE, Lundin S, Uvelius B: Effect and content of arginine vasopressin in normal and obstructed rat urinary bladder: an in vivo and in vitro investigation. J Urol, 150(5 Pt 1):1540, 1993.

    PubMed  CAS  Google Scholar 

  9. Brink PR: Gap junctions in vascular smooth muscle. Acta Physiol Scand, 164(4):349, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Brink PR, Ramanan SV, Christ GJ: Human connexin 43 gap junction channel gating: evidence for mode shifts and/or heterogeneity. Am J Physiol, 271(1 Pt 1):C321, 1996.

    PubMed  CAS  Google Scholar 

  11. Burnstock G, Holman ME: Spontaneous potentials at sympathetic nerve endings in smooth muscle. J Physiol, 160:446, 1962.

    PubMed  CAS  Google Scholar 

  12. Buttyan R, Chen MW, Levin RM: Animal models of bladder outlet obstruction and molecular insights into the basis for the development of bladder dysfunction. Eur Urol, 32(Suppl 1):32, 1997.

    PubMed  CAS  Google Scholar 

  13. Creed KE, Malmgren A: The effect of cromakalim on the electrical properties of and [86Rb+] efflux from normal and hypertrophied rat bladder. Clin and Exp Pharamcol and Physiol, 20:215, 1993.

    Article  CAS  Google Scholar 

  14. Christ GJ, Barr L: The neural control of smooth muscle. Advances in organ biology, Vol 8: Smooth Muscle. Connecticut: Jai Press, 2000.

    Google Scholar 

  15. Christ GJ, Brink PR.: Analysis of the presence and physiological relevance of subconducting states of Connexin43-derived gap junction channels in cultured human corporal vascular smooth muscle cells. Circ Res, 84(7):797, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Christ GJ, Day NS, Day M, Valcic M, Persson K, Andersson KE: Functional correlates of elevated connexin43 transcript levels in the bladder of partially obstructed female sprague-dawley rats. International Gap Junction Conference, Gwatt, Switzerland, 1999.

    Google Scholar 

  17. Christ GJ, Spray DC, el-Sabban M, Moore LK, Brink PR: Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res, 79(4):631, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Daniel EE, Cowan W, Daniel VP: Structural bases for neural and myogenic control of human detrusor muscle. Can J Physiol Pharmacol, 61(11):1247, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Day NS, Valcic M, Day M, Christ, GJ: Identification of K+ channels and connexin43 (Cx43) in human smooth muscle. FASEB J, A420, 1999.

    Google Scholar 

  20. Day NS, Andersson KE, Persson K, Day M, Valcic M, Christ GJ: Increased spontaneous contractility, myogenic activity and heptanol-sensitivity are correlated with elevated connexin43 transcript levels in the bladder of partially obstructed female Wistar rats. International Gap Junction Conference, Gwatt, Switzerland, 1999.

    Google Scholar 

  21. De Groat WC: A neurologic basis for the overactive bladder. Urology, 50(Suppl 6A):36, 1997.

    Article  PubMed  Google Scholar 

  22. Dixon JS, Gosling JA: Ultrastructure of smooth muscle cells in the urinary system. In: Motta PM, editors. Ultrastructure of smooth muscle. Boston: Kluwer Academic Publishers, p 153–170; 1990.

    Chapter  Google Scholar 

  23. Fry CH, Montegomery BSI, Gallegos CRR: The electrophysiology of human detrusor smooth muscle. Scan J Urol Nephrol, 29(Suppl 175):67, 1995.

    Google Scholar 

  24. Fry CH, Wu C, Sui GP: Electrophysiological properties of the bladder. Int Urogynecol J, 9:291, 1998.

    Article  CAS  Google Scholar 

  25. Fry CH, Wu C, Mundy AR: Bladder instability and detrusor smooth muscle function. Experimental Biology, 84:161, 1999.

    CAS  Google Scholar 

  26. Fry CH, Cooklin M, Birns J, Mundy AR: Measurement of intercellular electrical coupling in guinea-pig detrusor smooth muscle. J Urol, 161(2):660, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Gabella G: Cells and cell junctions in the muscle coat of the bladder. Scand J Urol Nephrol Suppl, 184:3, 1997.

    PubMed  CAS  Google Scholar 

  28. Gabella G, Uvelius B: Urinary bladder of rat: fine structure of normal and hypertrophic musculature. Cell Tissue Res, 262(1):67, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Guarneri L, Cova R, Angelico P, Colli E, Testa R: Effects of different drugs on the cystometrogram in conscious rats. Pharmacol Res, 24(2):175, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Hashitani H, Suzuki H: Altered electrical properties of bladder smooth muscle in streptozotocin-induced diabetic rats. Br J Urol, 77(6):798, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Lluel P, Duquenne C, Martin D: Experimental bladder instability following bladder outlet obstruction in the female rat. J Urol, 160(6 Pt 1):2253, 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Malmgren A, Sjogren C, Uvelius B, Mattiasson A, Andersson KE, Andersson PO: Cystometrical evaluation of bladder instability in rats with intravesical outflow obstruction. J Urol, 137:1291, 1987.

    PubMed  CAS  Google Scholar 

  33. Mostwin JL: The action potential of guinea pig bladder smooth muscle. J Urol, 135(6):1299, 1986.

    PubMed  CAS  Google Scholar 

  34. Mostwin JL: Electrical membrane events underlying contraction of guinea pig bladder muscle. Neurourol Urodyn, 6:429, 1988.

    Article  Google Scholar 

  35. Mostwin JL, Seki N, Karim OM, van Koeveringe G: Electrical properties of obstructed guinea pig bladder. Muscle, Matrix, and Bladder Function. New York: Plenum Press, 21–28, 1995.

    Google Scholar 

  36. Pandita RK, Andersson KE: Effects of intravesical administration of the K+ channel opener, ZD6169, in conscious rats with and without bladder outflow obstruction. J Urol, 162(3 Pt 1):943, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Ramanan SV, Brink PR, Christ GJ: Neuronal innervation, intracellular signal transduction and intercellular coupling: a model for syncytial tissue responses in the steady state. J Theor Biol, 193(1):69, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Serels S, Day NS, Wen YP, Giraldi A, Lee SW, Melman A, Christ GJ: Molecular studies of human connexin 43 (Cx43) expression in isolated corporal tissue strips and cultured corporal smooth muscle cells. Int J Impot Res, 10(3):135, 1998.

    Article  PubMed  CAS  Google Scholar 

  39. Seki N, Karim OM, Mostwin JL: Changes in electrical properties of guinea pig smooth muscle membrane by bladder outflow obstruction. Am J Physiol, 262:F885, 1992.

    PubMed  CAS  Google Scholar 

  40. Seki N, Karim OM, Mostwin JL: Effect of pinacidil on the membrane electrical activity of guinea pig detrusor muscle. J Pharmacol Exp Ther, 263(2):816, 1992b.

    PubMed  CAS  Google Scholar 

  41. Seki N, Karim OMA, Mostwin JL: The effect of experimental urethral obstruction and its reversal on changes in passive electrical properties of detrusor muscle. J Urol, 148:1957, 1992.

    PubMed  CAS  Google Scholar 

  42. Turner WH, Brading AF: Smooth muscle of the bladder in the normal and the diseased state: pathophysiology, diagnosis and treatment. Pharmacol Ther, 75(2):77, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. Wojdan A, Freeden C, Woods M, Oshiro G, Spinelli W, Colatsky TJ, et al: Comparison of the potassium channel openers, WAY-133537, ZD6169, and celikalim on isolated bladder tissue and In vivo bladder instability in rat. J Pharmacol Exp Ther, 289(3):1410, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christ, G.J. et al. (2003). Intercellular Communication and Bladder Function. In: Atala, A., Slade, D. (eds) Bladder Disease, Part A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8889-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8889-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4707-1

  • Online ISBN: 978-1-4419-8889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics