Antibodies pp 119-139 | Cite as

Monoclonal and Bispecific Antibodies in Combination with Radiotherapy for Cancer Treatment



In recent years, the advent of new tumor-targeting vectors such as monoclonal or bispecific antibodies has resulted in the development of a new generation of therapeutic radiopharmaceuticals and an increasing research interest in this field. However, the emphasis in the overwhelming majority of such studies has been on efficacy in clinical conditions or in animal models of human cancers, and little consideration has been given to the effects of the combination of these antibodies and radiation therapy.


Epidermal Growth Factor Receptor Bispecific Antibody Epidermal Growth Factor Receptor Family Epidermal Growth Factor Receptor Blockade Epidermal Growth Factor Receptor Family Member 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D.W. & Holt, J.T. (1999). Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem, 274, 2732–42.PubMedCrossRefGoogle Scholar
  2. Aboud-Pirak, E., Hurwitz, E., Pirak, M.E., Bellot, F., Schlessinger, J. & Sela, M. (1988). Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J Natl Cancer Inst, 80, 1605–11.PubMedCrossRefGoogle Scholar
  3. Akimoto, T., Hunter, N.R., Buchmiller, L., Mason, K., Kian Ang, K. & Milas, L. (1999). Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res, 5, 2884–2890.PubMedGoogle Scholar
  4. Allred, D.C., Clark, G.M., Molina, R., Tandon, A.K., Schnitt, S.J., Gilchrist, K.W., Osborne, C.K., Tormey, D.C. & McGuire, W.L. (1992). Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol, 23, 974–9.PubMedCrossRefGoogle Scholar
  5. Alroy, I. & Yarden, Y. (1997). The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett, 410, 83–6.PubMedCrossRefGoogle Scholar
  6. Auer, K.L., Park, J.S., Seth, P., Coffey, R.J., Darlington, G., Abo, A., McMahon, M., Depinho, R.A., Fisher, P.B. & Dent, P. (1998). Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-l/WAFl-null mice, but not in hepatocytes from pl6rNK4a-null mice. Biochem J, 336, 551–60.PubMedGoogle Scholar
  7. Azria, D., Dorvillius, M., Gourgou, S., Martineau, P., Robert, B., Pugnière, M., Delard, R., Ychou, M., Dubois, J.B. & Pèlegrin, A. (2003a). Enhancement of radiation therapy by tumor necrosis factor alpha in human colon cancer using a bispecific antibody. Int J Radiat Oncol Biol Phys, 55, 1363–73.PubMedCrossRefGoogle Scholar
  8. Azria, D., Larbouret, C., Martineau, P., Robert, B., Aillères, N., Ychou, M., Dubois, J.B. & Pèlegrin, A. (2003b). A Bispecific antibody against tumor necrosis factor alpha and carcinoembryonic antigen (CEA) to enhance radiation therapy in CEA-expressing digestive tumors.Int J Radiat Oncol Biol Phys, In Press. Google Scholar
  9. Azria, D., Labouret, C, Garambois, V., Kramar, A., Martineau, P., Robert B., Aillères, N., Ychou, M., Dubois, J., & Pelegrin, A., (2004). Potentiation of ionising radiation by targeting tumour necrosis factor alpha using a biospecific antibody in human pancreatic cancer: Brit J Cancer, In pressGoogle Scholar
  10. Balaban, N., Moni, J., Shannon, M., Dang, L., Murphy, E. & Goldkorn, T. (1996). The effect of ionizing radiation on signal transduction: antibodies to EGF receptor sensitize A431 cells to radiation. Biochim Biophys Acta, 1314, 147–56.Google Scholar
  11. Barker, F.G., 2nd, Simmons, M.L., Chang, S.M., Prados, M.D., Larson, D.A., Sneed, P.K., Wara, W.M., Berger, M.S., Chen, P., Israel, M.A. & Aldape, K.D. (2001). EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 51, 410–8.PubMedCrossRefGoogle Scholar
  12. Baselga, J. (2001). The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer, 37 Suppl 4, S16–22.PubMedCrossRefGoogle Scholar
  13. Baselga, J. & Albaneil, J. (2001). Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol, 12, S35–41.Google Scholar
  14. Baselga, J., Norton, L., Albanell, J., Kim, Y.M. & Mendelsohn, J. (1998). Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res, 58, 2825–31.PubMedGoogle Scholar
  15. Baselga, J., Pfister, D., Cooper, M.R., Cohen, R., Burtness, B., Bos, M., D’Andrea, G., Seidman, A., Norton, L., Gunnett, K., Falcey, J., Anderson, V., Waksal, H. & Mendelsohn, J. (2000). Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol, 18, 904–14.PubMedGoogle Scholar
  16. Baselga, J., Tripathy, D., Mendelsohn, J., Baughman, S., Benz, C.C., Dantis, L., Sklarin, N.T., Seidman, A.D., Hudis, CA., Moore, J., Rosen, P.P., Twaddell, T., Henderson, I.C. & Norton, L. (1996). Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol, 14, 737–44.PubMedGoogle Scholar
  17. Berger, M.S., Locher, G.W., Saurer, S., Gullick, W.J., Waterfield, M.D., Groner, B. & Hynes, N.E. (1988). Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res, 48, 1238–43.PubMedGoogle Scholar
  18. Beutler, B. & Cerami, A. (1988). The history, properties, and biological effects of cachectin. Biochemistry, 27, 7575–82.PubMedCrossRefGoogle Scholar
  19. Bianco, C., Bianco, R., Tortora, G., Damiano, V., Guerrieri, P., Montemaggi, P., Mendelsohn, J., De Placido, S., Bianco, A.R. & Ciardiello, F. (2000). Antitumor activity of combined treatment of human cancer cells with ionizing radiation and anti-epidermal growth factor receptor monoclonal antibody C225 plus type I protein kinase A antisense oligonucleotide. Clin Cancer Res, 6, 4343–50.PubMedGoogle Scholar
  20. Bishop, J.M. (1991). Molecular themes in oncogenesis. Cell, 64, 235–48.PubMedCrossRefGoogle Scholar
  21. Bonner, J.A., Ezekiel, M.P., Robert, F., Meredith, R.F., Spencer, S.A. & Waksal, H.W. (2000a). Continued response following treatment with IMC-C225, an EGFr MoAb, combined with RT in advanced head and neck malignancies. In Proc ASCO, Vol. 19 (5F). pp. 4a.Google Scholar
  22. Bonner, J.A., Raisch, K.P., Trummell, H.Q., Robert, F., Meredith, R.F., Spencer, S.A., Buchsbaum, D.J., Saleh, M.N., Stackhouse, M.A., LoBuglio, A.F., Peters, G.E., Carroll, W.R. & Waksal, H.W. (2000b). Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J Clin Oncol, 18, 47S–53S.PubMedGoogle Scholar
  23. Buchsbaum, D.J., Bonner, J.A., Grizzle, W.E., Stackhouse, M.A., Carpenter, M., Hicklin, D.J., Bohlen, P. & Raisch, K.P. (2002). Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. Int J Radiat Oncol Biol Phys, 54, 1180–93.PubMedCrossRefGoogle Scholar
  24. Carpenter, G. & Cohen, S. (1990). Epidermal growth factor. J Biol Chem, 265, 7709–12.PubMedGoogle Scholar
  25. Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N. & Williamson, B. (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA, 72, 3666–70.Google Scholar
  26. Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B., Henner, D., Wong, W.L., Rowland, A.M., Kotts, C, Carver, M.E. & Shepard, H.M. (1992). Humanization of an anti-pl85HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA, 89, 4285–9.Google Scholar
  27. Carter, S., Auer, K.L., Reardon, D.B., Birrer, M., Fisher, P.B., Valerie, K., Schmidt-Ullrich, R., Mikkelsen, R. & Dent, P. (1998). Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene, 16, 2787–96.PubMedCrossRefGoogle Scholar
  28. Chen, R.H., Su, Y.H., Chuang, R.L. & Chang, T.Y. (1998). Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene, 17, 1959–68.PubMedCrossRefGoogle Scholar
  29. Chmura, S.J., Mauceri, H.J., Advani, S., Heimann, R., Beckett, M.A., Nodzenski, E., Quintans, J., Kufe, D.W. & Weichselbaum, R.R. (1997). Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res, 57, 4340–7.PubMedGoogle Scholar
  30. Ciardiello, F. & Tortora, G. (2001). A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res, 7, 2958–70.PubMedGoogle Scholar
  31. Clynes, R.A., Towers, T.L., Presta, L.G. & Ravetch, J.V. (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med, 6, 443–6.PubMedCrossRefGoogle Scholar
  32. Cobleigh, M.A., Vogel, C.L., Tripathy, D., Robert, N.J., Scholl, S., Fehrenbacher, L., Wolter, J.M., Paton, V., Shak, S., Lieberman, G. & Slamon, D.J. (1999). Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol, 17, 2639–48.PubMedGoogle Scholar
  33. David, M., Wong, L., Flavell, R., Thompson, S.A., Wells, A., Lamer, A.C. & Johnson, G.R. (1996). STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J Biol Chem, 271, 9185–8.PubMedCrossRefGoogle Scholar
  34. Dent, P., Reardon, D.B., Morrison, D.K. & Sturgill, T.W. (1995). Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro. Mol Cell Biol, 15, 4125–35.PubMedGoogle Scholar
  35. Dent, P., Reardon, D.B., Park, J.S., Bowers, G., Logsdon, C, Valerie, K. & Schmidt-Ullrich, R. (1999). Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell, 10, 2493–506.PubMedGoogle Scholar
  36. Di Fiore, P.P., Pierce, J.H., Kraus, M.H., Segatto, O., King, C.R. & Aaronson, S.A. (1987). erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science, 237, 178–82.PubMedCrossRefGoogle Scholar
  37. Dougall, W.C, Qian, X., Peterson, N.C., Miller, M.J., Samanta, A. & Greene, M.I. (1994). The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene, 9, 2109–23.PubMedGoogle Scholar
  38. Franke, T.F., Kaplan, D.R. & Cantley, L.C. (1997). PI3K: downstream AKTion blocks apoptosis. Cell, 88, 435–7.PubMedCrossRefGoogle Scholar
  39. Ghosh, S., Strum, J.C, Sciorra, V.A., Daniel, L. & Bell, R.M. (1996). Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem, 271, 8472–80.PubMedCrossRefGoogle Scholar
  40. Goldkorn, T., Balaban, N., Shannon, M. & Matsukuma, K. (1997). EGF receptor phosphorylation is affected by ionizing radiation. Biochim Biophys Acta, 1358, 289–99.PubMedCrossRefGoogle Scholar
  41. Goldstein, N.I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. (1995). Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res, 1, 1311–8.PubMedGoogle Scholar
  42. Grandis, J.R., Drenning, S.D., Zeng, Q., Watkins, S.C., Melhem, M.F., Endo, S., Johnson, D.E., Huang, L., He, Y. & Kim, J.D. (2000). Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA, 97, 4227–32.Google Scholar
  43. Gridley, D.S., Archambeau, J.O., Andres, M.A., Mao, X.W., Wright, K. & Slater, J.M. (1997). Tumor necrosis factor-alpha enhances antitumor effects of radiation against glioma xenografts. Oncol Res, 9, 217–27.PubMedGoogle Scholar
  44. Gridley, D.S., Hammond, S.N. & Liwnicz, B.H. (1994). Tumor necrosis factor-alpha augments radiation effects against human colon tumor xenografts. Anticancer Res, 14, 1107–12.PubMedGoogle Scholar
  45. Gupta, A.K., McKenna, W.G., Weber, C.N., Feldman, M.D., Goldsmith, J.D., Mick, R., Machtay, M., Rosenthal, D.I., Bakanauskas, V.J., Cerniglia, G.J., Bernhard, E.J., Weber, R.S. & Muschel, R.J. (2002). Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res, 8, 885–92.PubMedGoogle Scholar
  46. Guy, P.M., Platko, J.V., Cantley, L.C., Cerione, R.A. & Carraway, K.L., 3rd. (1994). Insect cell-expressed pl80erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci USA, 91, 8132–6.Google Scholar
  47. Haimovitz-Friedman, A. (1998). Radiation-induced signal transduction and stress response. Radiat Res, 150, S102–8.PubMedCrossRefGoogle Scholar
  48. Hallahan, D.E., Beckett, M.A., Kufe, D. & Weichselbaum, R.R. (1990). The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys, 19, 69–74.PubMedCrossRefGoogle Scholar
  49. Hambek, M., Solbach, C, Schnuerch, H.G., Roller, M., Stegmueller, M., Sterner-Kock, A., Kiefer, J. & Knecht, R. (2001). Tumor necrosis factor alpha sensitizes low epidermal growth factor receptor (EGFR)-expressing carcinomas for anti-EGFR therapy. Cancer Res, 61, 1045–9.PubMedGoogle Scholar
  50. Helson, L., Helson, C. & Green, S. (1979). Effects of murine tumor necrosis factor on heterotransplanted human tumors. Exp Cell Biol, 47, 53–60.PubMedGoogle Scholar
  51. Huang, S.M., Bock, J.M. & Harari, P.M. (1999). Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res, 59, 1935–40.PubMedGoogle Scholar
  52. Huang, S.M. & Harari, P.M. (1999). Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest New Drugs, 17, 259–69.PubMedCrossRefGoogle Scholar
  53. Huang, S.M. & Harari, P.M. (2000). Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res, 6, 2166–74.PubMedGoogle Scholar
  54. Hudziak, R.M., Lewis, G.D., Winget, M., Fendly, B.M., Shepard, H.M. & Ullrich, A. (1989). p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol, 9, 1165–72.PubMedGoogle Scholar
  55. Hudziak, R.M., Schlessinger, J. & Ullrich, A. (1987). Increased expression of the putative growth factor receptor pl85HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA, 84, 7159–63.Google Scholar
  56. Hynes, N.E. & Stern, D.F. (1994). The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta, 1198, 165–84.PubMedGoogle Scholar
  57. Ignatoski, K.M., Lapointe, A.J., Radany, E.H. & Ethier, S.P. (1999). erbB-2 overexpression in human mammary epithelial cells confers growth factor independence. Endocrinology, 140, 3615–22.PubMedCrossRefGoogle Scholar
  58. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R.K. (2002). Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature, 416, 279–80.PubMedCrossRefGoogle Scholar
  59. Janes, P.W., Daly, R.J., deFazio, A. & Sutherland, R.L. (1994). Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene, 9, 3601–8.PubMedGoogle Scholar
  60. Jurianz, K., Maslak, S., Garcia-Schuler, H., Fishelson, Z. & Kirschfink, M. (1999). Neutralization of complement regulatory proteins augments lysis of breast carcinoma cells targeted with rhumAb anti-HER2. Immunopharmacology, 42, 209–18.PubMedCrossRefGoogle Scholar
  61. Kavanagh, B.D., Dent, P., Schmidt-Ullrich, R.K., Chen, P. & Mikkelsen, R.B. (1998). Calcium-dependent stimulation of mitogen-activated protein kinase activity in A431 cells by low doses of ionizing radiation. Radiat Res, 149, 579–87.PubMedCrossRefGoogle Scholar
  62. Klapper, L.N., Vaisman, N., Hurwitz, E., Pinkas-Kramarski, R., Yarden, Y. & Sela, M. (1997). A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene, 14, 2099–109.PubMedCrossRefGoogle Scholar
  63. Lane, H.A., Motoyama, A.B., Beuvink, I. & Hynes, N.E. (2001). Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Ann Oncol, 12, S21–2.PubMedCrossRefGoogle Scholar
  64. Lin, J.T., Wu, M.S., Shun, CT., Lee, W.J., Sheu, J.C. & Wang, T.H. (1995). Occurrence of microsatellite instability in gastric carcinoma is associated with enhanced expression of erbB-2 oncoprotein. Cancer Res, 55, 1428–30.PubMedGoogle Scholar
  65. Marais, R., Light, Y., Paterson, H.F. & Marshall, C.J. (1995). Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. Embo J, 14, 3136–45.PubMedGoogle Scholar
  66. Milas, L., Mason, K., Hunter, N., Petersen, S., Yamakawa, M., Ang, K., Mendelsohn, J. & Fan, Z. (2000). In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res, 6, 701–8.PubMedGoogle Scholar
  67. Moghal, N. & Sternberg, P.W. (1999). Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol, 11, 190–6.PubMedCrossRefGoogle Scholar
  68. Moscatello, D.K., Holgado-Madruga, M., Emlet, D.R., Montgomery, R.B. & Wong, A.J. (1998). Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem, 273, 200–6.PubMedCrossRefGoogle Scholar
  69. Naramura, M., Gillies, S.D., Mendelsohn, J., Reisfeld, R.A. & Mueller, B.M. (1993). Therapeutic potential of chimeric and murine anti-(epidermal growth factor receptor) antibodies in a metastasis model for human melanoma. Cancer Immunol Immunother, 37, 343–9.PubMedCrossRefGoogle Scholar
  70. Nasu, S., Ang, K.K., Fan, Z. & Milas, L. (2001). C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int J Radiat Oncol Biol Phys, 51, 474–7.PubMedCrossRefGoogle Scholar
  71. Nicholson, R.I., Gee, J.M. & Harper, M.E. (2001). EGFR and cancer prognosis. Eur J Cancer, 37 Suppl 4, S9–15.PubMedCrossRefGoogle Scholar
  72. Nishiguchi, I., Willingham, V. & Milas, L. (1990). Tumor necrosis factor as an adjunct to fractionated radiotherapy in the treatment of murine tumors. Int J Radiat Oncol Biol Phys, 18, 555–8.PubMedCrossRefGoogle Scholar
  73. Old, L.J. (1988). Tumor necrosis factor. Sci Am, 258, 59–60, 69-75.PubMedCrossRefGoogle Scholar
  74. O’Rourke, D.M., Kao, G.D., Singh, N., Park, B.W., Muschel, R.J., Wu, C.J. & Greene, M.I. (1998). Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc. Natl. Acad.Sci. USA, 95, 10842–10847.Google Scholar
  75. Park, O.K., Schaefer, T.S. & Nathans, D. (1996). In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci USA, 93, 13704–8.Google Scholar
  76. Pegram, M.D., Lipton, A., Hayes, D.F., Weber, B.L., Baselga, J.M., Tripathy, D., Baly, D., Baughman, S.A., Twaddell, T., Glaspy, J.A. & Slamon, D.J. (1998). Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-pl85HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol, 16, 2659–71.PubMedGoogle Scholar
  77. Peng, D., Fan, Z., Lu, Y., DeBlasio, T., Scher, H. & Mendelsohn, J. (1996). Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIPl and induces Gl arrest in prostatic cancer cell line DU 145. Cancer Res, 56, 3666–9.PubMedGoogle Scholar
  78. Perrotte, P., Matsumoto, T., Inoue, K., Kuniyasu, H., Eve, B.Y., Hicklin, D.J., Radinsky, R. & Dinney, C.P. (1999). Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res, 5, 257–65.PubMedGoogle Scholar
  79. Perry, J.E., Grossmann, M.E. & Tindall, D.J. (1998). Epidermal growth factor induces cyclin D1 in a human prostate cancer cell line. Prostate, 35, 117–24.PubMedCrossRefGoogle Scholar
  80. Petit, A.M., Rak, J., Hung, M.C., Rockwell, P., Goldstein, N., Fendly, B. & Kerbel, R.S. (1997). Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol, 151, 1523–30.PubMedGoogle Scholar
  81. Pietras, R.J., Poen, J.C., Gallardo, D., Wongvipat, P.N., Lee, H.J. & Slamon, D.J. (1999). Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res, 59, 1347–55.PubMedGoogle Scholar
  82. Prewett, M., Rothman, M., Waksal, H., Feldman, M., Bander, N.H. & Hicklin, D.J. (1998). Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res, 4, 2957–66.PubMedGoogle Scholar
  83. Radinsky, R., Risin, Fan, Dong, Bielenberg, Bucana & Fidler. (1995). Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res, 1, 19–31.PubMedGoogle Scholar
  84. Ram, T.G. & Ethier, S.P. (1996). Phosphatidylinositol 3-kinase recruitment by pl85erbB-2 and erbB-3 is potently induced by neu differentiation factor/heregulin during mitogenesis and is constitutively elevated in growth factor-independent breast carcinoma cells with c-erbB-2 gene amplification. Cell Growth Differ, 7, 551–61.PubMedGoogle Scholar
  85. Robert, B., Mach, J.P., Mani, J.C., Ychou, M., Folli, S., Artus, J.C. & Pelegrin, A. (1996). Cytokine targeting in tumors using a bispecific antibody directed against carcinoembryonic antigen and tumor necrosis factor alpha. Cancer Res, 56,4758–65.PubMedGoogle Scholar
  86. Ruegg, C, Yilmaz, A., Bieler, G., Bamat, J., Chaubert, P. & Lejeune, F.J. (1998). Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med, 4, 408–14.PubMedCrossRefGoogle Scholar
  87. Saleh, M.N., Raisch, K.P., Stackhouse, M.A., Grizzle, W.E., Bonner, J.A., Mayo, M.S., Kim, H.G., Meredith, R.F., Wheeler, R.H. & Buchsbaum, D.J. (1999). Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother Ratiopharm, 14, 451–63.CrossRefGoogle Scholar
  88. Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z. & Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell, 86, 189–99.PubMedCrossRefGoogle Scholar
  89. Schmidt, M., McWatters, A., White, R.A., Groner, B., Wels, W., Fan, Z. & Bast, R.C., Jr. (2001). Synergistic interaction between an anti-pl85HER-2 Pseudomonas exotoxin fusion protein [scFv(FRP5)-ETA] and ionizing radiation for inhibiting growth of ovarian cancer cells that overexpress HER-2. Gynecol Oncol, 80, 145–55.PubMedCrossRefGoogle Scholar
  90. Schmidt-Ullrich, R.K., Dent, P., Grant, S., Mikkelsen, R.B. & Valerie, K. (2000). Signal transduction and cellular radiation responses. Radiat Res, 153, 245–57.PubMedCrossRefGoogle Scholar
  91. Schmidt-Ullrich, R.K., Mikkelsen, R.B., Dent, P., Todd, D.G., Valerie, K., Kavanagh, B.D., Contessa, J.N., Rorrer, W.K. & Chen, P.B. (1997). Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene, 15, 1191–7.PubMedCrossRefGoogle Scholar
  92. Schnurch, H.G., Stegmuller, M., Vering, A., Beckmann, M.W. & Bender, H.G. (1994). Growth inhibition of xenotransplanted human carcinomas by a monoclonal antibody directed against the epidermal growth factor receptor. Eur J Cancer, 4, 491–6.CrossRefGoogle Scholar
  93. Sersa, G., Willingham, V. & Milas, L. (1988). Anti-tumor effects of tumor necrosis factor alone or combined with radiotherapy. Int J Cancer, 42, 129–34.PubMedCrossRefGoogle Scholar
  94. Shak, S. (1999). Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin Oncol, 26, 71–7.PubMedGoogle Scholar
  95. Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., Baselga, J. & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med, 344, 783–92.PubMedCrossRefGoogle Scholar
  96. Slichenmyer, W.J. & Fry, D.W. (2001). Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin Oncol, 28, 67–79.PubMedCrossRefGoogle Scholar
  97. Sliwkowski, M.X., Lofgren, J.A., Lewis, G.D., Hotaling, T.E., Fendly, B.M. & Fox, J.A. (1999). Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol, 26, 60–70.PubMedGoogle Scholar
  98. Stackhouse, M.A., Buchsbaum, D.J., Grizzle, W.E., Bright, S.J., Olsen, C.C., Kancharla, S., Mayo, M.S. & Curiel, D.T. (1998). Radiosensitization mediated by a transfected antierbB-2 single-chain antibody in vitro and in vivo. Int J Radiat Oncol Biol Phys, 42, 817–22.PubMedCrossRefGoogle Scholar
  99. Sugarman, B.J., Aggarwal, B.B., Hass, P.E., Figari, I.S., Palladino, M.A., Jr. & Shepard, H.M. (1985). Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science, 230, 943–5.PubMedCrossRefGoogle Scholar
  100. Teramoto, T., Onda, M., Tokunaga, A. & Asano, G. (1996). Inhibitory effect of anti-epidermal growth factor receptor antibody on a human gastric cancer. Cancer, 77, 1639–45.PubMedGoogle Scholar
  101. Tokuda, Y., Ohnishi, Y., Shimamura, K., Iwasawa, M., Yoshimura, M., Ueyama, Y., Tamaoki, N., Tajima, T. & Mitomi, T. (1996). In vitro and in vivo anti-tumour effects of a humanised monoclonal antibody against c-erbB-2 product. Br J Cancer, 73, 1362–5.PubMedCrossRefGoogle Scholar
  102. Tombes, R.M., Auer, K.L., Mikkelsen, R., Valerie, K., Wymann, M.P., Marshall, C.J., McMahon, M. & Dent, P. (1998). The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J, 330 (Pt 3), 1451–60.PubMedGoogle Scholar
  103. Tse, C., Brault, D. & Etienne, J. (1997). [Current aspects of the evaluation of ERBB2 activation in breast cancer. Therapeutic perspectives]. Ann Biol Clin (Paris), 55, 545–54.Google Scholar
  104. Ullrich, A. & Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell, 61, 203–12.PubMedCrossRefGoogle Scholar
  105. Uno, M., Otsuki, T., Kurebayashi, J., Sakaguchi, H., Isozaki, Y., Ueki, A., Yata, K., Fujii, T., Hiratsuka, J., Akisada, T., Harada, T. & Imajo, Y. (2001). Anti-HER2-antibody enhances irradiation-induced growth inhibition in head and neck carcinoma. Int J Cancer, 94, 474–9.PubMedCrossRefGoogle Scholar
  106. van der Geer, P., Hunter, T. & Lindberg, R.A. (1994). Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol, 10, 251–337.PubMedCrossRefGoogle Scholar
  107. Voldborg, B.R., Damstrup, L., Spang-Thomsen, M. & Poulsen, H.S. (1997). Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol, 8, 1197–206.PubMedCrossRefGoogle Scholar
  108. Warenius, H.M., Jones, M.D. & Thompson, C.C. (1996). Exit from G2 phase after 2 Gy gamma irradiation is faster in radiosensitive human cells with high expression of the RAF1 proto-oncogene. Radiat Res, 146,485–93.PubMedCrossRefGoogle Scholar
  109. Wollman, R., Yahalom, J., Maxy, R., Pinto, J. & Fuks, Z. (1994). Effect of epidermal growth factor on the growth and radiation sensitivity of human breast cancer cells in vitro. Int J Radiat Oncol Biol Phys, 30, 91–8.PubMedCrossRefGoogle Scholar
  110. Wu, X., Fan, Z., Masui, H., Rosen, N. & Mendelsohn, J. (1995). Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest, 95, 1897–905.PubMedCrossRefGoogle Scholar
  111. Wu, X., Rubin, M., Fan, Z., DeBlasio, T., Soos, T., Koff, A. & Mendelsohn, J. (1996). Involvement of p27KIPl in Gl arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene, 12, 1397–403.PubMedGoogle Scholar
  112. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. & Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326–31.PubMedCrossRefGoogle Scholar
  113. Yarden, Y. (2001). The EGFR family and its ligands in human cancer, signalling mechanisms and therapeutic opportunities. Eur J Cancer, 37 Suppl 4, S3–8.PubMedCrossRefGoogle Scholar
  114. Yarden, Y. & Ullrich, A. (1988). Growth factor receptor tyrosine kinases. Annu Rev Biochem, 57, 443–78.PubMedCrossRefGoogle Scholar
  115. Zolfaghari, A. & Djakiew, D. (1996). Inhibition of chemomigration of a human prostatic carcinoma cell (TSU-prl) line by inhibition of epidermal growth factor receptor function. Prostate, 28, 232–8.PubMedCrossRefGoogle Scholar
  116. zum Buschenfelde, C.M., Hermann, C, Schmidt, B., Peschel, C. & Bernhard, H. (2002). Antihuman Epidermal Growth Factor Receptor 2 (HER2) Monoclonal Antibody Trastuzumab Enhances Cytolytic Activity of Class I-restricted HER2-specific T Lymphocytes Against HER2-overexpressing Tumor Cells. Cancer Res, 62, 2244–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.Immunociblage des Tumeurs et Ingénierie des AnticorpsEMI 0227 INSERM-Université Montpellier I-CRLC Montpellier, Centre de Recherche en Cancérologie, CRLC Val d’Aurelle -Paul LamarqueMontpellier Cedex 5France
  2. 2.Department of Radiation OncologyCRLC Val d’Aurelle- Paul LamarqueMontpellier Cedex 5France
  3. 3.Department of Radiation OncologyCentre Hospitalier Universitaire VaudoisLausanneSuisse

Personalised recommendations