Advertisement

Antibodies pp 105-117 | Cite as

Novel Hiv Neutralizing Antibodies Selected from Phage Display Libraries

Chapter

Abstract

Neutralizing antibodies play a major role in host defense against viral infections. Passive administration of antibodies specific for HIV-1 can protect monkeys from infections mediated by the HIV-1 envelope glycoprotein (Env) in a concentration dependent manner (Shibata et al., 1999; Baba et al., 2000; Ruprecht et al., 2001; Xu et al., 2002; Veazey et al., 2003; Burton, 2002; Ferrantelli and Ruprecht, 2002; Mascola et al., 1999; Mascola et al., 2000; Mascola, 2002; Parren et al., 2001). In some of these experiments human monoclonal antibodies (hmAbs) were used that exhibit potent and broad HTV neutralizing activity in vitro (Burton, 1997; Burton, 2002; Ferrantelli and Ruprecht, 2002). Recent clinical trials found that two of these broadly HIV neutralizing hmAbs (nhmAbs), 2F5 and 2G12, could produce a modest decrease in viral load without side effects in humans (Armbruster et al., 2002; Stiegler et al., 2002). However, the potency of 2F5 and 2G12 used in combination in this clinical trial was not sufficient to reduce the HIV-1 plasma RNA levels to the low levels observed after treatment with HAART (Stiegler et al., 2002). Increases in the potency of the currently available broadly HTV nhmAbs and the development of new neutralizing hmAbs might be helpful here although problems associated with neutralization escape are likely to be severe in any attempts to use antibodies therapeutically. Importantly, finding immunogens that are able to elicit broadly HIV nhmAbs could be facilitated by the exploration of the interaction of these antibodies with the Env-an approach known as “retrovaccinology” (Burton, 2002). However, only a few broadly cross-reactive HTV nhmAbs have been identified to date and efforts to use mimetics of their epitopes or portions of the epitopes as immunogens are ongoing but of limited success so far (Zwick et al., 2001a). The identification of new broadly cross-reactive HIV nhmAbs and their conserved epitopes is therefore of obvious importance for the development of effective HIV vaccines.

Keywords

Human Immunodeficiency Virus Type Human Monoclonal Antibody Phage Display Library Antibody Library Antibody Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armbruster, C, Stiegler, G.M., Vcelar, B-A., Jager, W., Michael, N.L., Vetter, N., and Katinger, H.W. (2002). A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. AIDS 16, 227–233.PubMedCrossRefGoogle Scholar
  2. Baba, T.W., Liska, V., Hofmann-Lehmann, R., Vlasak, J., Xu, W., Ayehunie, S., Cavacini, L.A., Posner, M.R., Katinger, H., Stiegler, G., Bernacky, B.J., Rizvi, T.A., Schmidt, R., Hill, L.R., Keeling, M.E., Lu, Y., Wright J.E., Chou. T.C, and Ruprecht, R.M. (2000). Human neutralizing monoclonal antibodies of the IgGl subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6, 200–206.PubMedCrossRefGoogle Scholar
  3. Barbas, C.F., Burton, D.R., Scott, J.K., and Silverman, G.J. (2001). Phage Display: A Laboratory Mannual. (Cold Spring Harbor: Cold Spring Harbor Laboratory Press).Google Scholar
  4. Barbas, C.F., III, Kang, A.S., Lerner, R.A., and Benkovic, S.J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. U.S. A 88, 7978–7982.PubMedCrossRefGoogle Scholar
  5. Bradbury, A., Persic, L., Werge, T., and Cattaneo, A. (1993). Use of living columns to select specific phage antibodies. Biotechnology (N. Y.) 11, 1565–1569.CrossRefGoogle Scholar
  6. Burton, D.R. (1997). A vaccine for HIV type 1: the antibody perspective. Proc. Natl. Acad. Sci. U.S.A. 94, 10018–10023.PubMedCrossRefGoogle Scholar
  7. Burton, D.R. (2002). Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713.PubMedCrossRefGoogle Scholar
  8. Burton, D.R., Barbas, C.F., Persson, M.A., Koenig, S., Chanock, R.M., and Lerner, R.A. (1991). A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. U. S. A. 88, 10134–10137.PubMedCrossRefGoogle Scholar
  9. Burton, D.R., Pyati, J., Koduri, R., Sharp, S.J., Thornton, G.B., Parren, P.W., Sawyer, L.S., Hendry, R.M., Dunlop, N., Nara, P.L., and et al. (1994). Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027.PubMedCrossRefGoogle Scholar
  10. Cai, X. and Garen, A. (1995). Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. U. S. A 92, 6537–6541.PubMedCrossRefGoogle Scholar
  11. Clackson, T., Hoogenboom, H.R., Griffiths, A.D., and Winter, G. (1991). Making antibody fragments using phage display libraries. Nature 352, 624–628.PubMedCrossRefGoogle Scholar
  12. de Kruif, J., Terstappen, L., Boel, E., and Logtenberg, T. (1995). Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. U. S. A 92, 3938–3942.PubMedCrossRefGoogle Scholar
  13. Dimitrov, D.S. (1996). Fusin-a place for HIV-1 and T4 cells to meet. Identifying the coreceptor mediating HIV-1 entry raises new hopes in the treatment of AIDS. Nature Medicine 2, 640–641.PubMedCrossRefGoogle Scholar
  14. Dimitrov, D.S. (2000). Cell biology of virus entry. Cell. 101, 697–702.PubMedCrossRefGoogle Scholar
  15. Ditzel, H.J. (2002). Rescue of a broader range of antibody specificities using an epitope-masking strategy. Methods Mol. Biol 178, 179–186.PubMedGoogle Scholar
  16. Ditzel, H.J., Binley, J.M., Moore, J.P., Sodroski, J., Sullivan, N., Sawyer, L.S., Hendry, R.M., Yang, W.P., Barbas, C.F., III, and Burton, D.R. (1995). Neutralizing recombinant human antibodies to a conformational V2-and CD4-binding site-sensitive epitope of HIV-1 gp l20 isolated by using an epitope-masking procedure. J. Immunol. 154, 893–906.PubMedGoogle Scholar
  17. Ditzel, H.J., Masaki, Y., Nielsen, H., Farnaes, L., and Burton, D.R. (2000). Cloning and expression of a novel human antibody-antigen pair associated with Felty’s syndrome. Proc. Natl. Acad. Sci. U. S. A. 97, 9234–9239.PubMedCrossRefGoogle Scholar
  18. Duenas, M., Malmborg, A.C, Casalvilla, R., Ohlin, M., and Borrebaeck, C.A. (1996). Selection of phage displayed antibodies based on kinetic constants. Mol. Immunol. 33, 279–285.PubMedCrossRefGoogle Scholar
  19. Ferrantelli, F. and Ruprecht, R.M. (2002). Neutralizing antibodies against HIV-back in the major leagues? Curr. Opin. Immunol. 14, 495–502.PubMedCrossRefGoogle Scholar
  20. Griffiths, A.D. and Duncan, A.R. (1998). Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108.PubMedCrossRefGoogle Scholar
  21. Griffiths, A.D., Malmqvist, M, Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., and. (1993). Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.PubMedGoogle Scholar
  22. Griffiths, A.D., Williams, S.C, Hartley, O., Tomlinson, J.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., and (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.PubMedGoogle Scholar
  23. Hallborn, J. and Carlsson, R. (2002). Automated screening procedure for high-throughput generation of antibody fragments. Biotechniques Suppl, 30–37.Google Scholar
  24. Hawkins, R.E., Russell, S.J., and Winter, G. (1992). Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896.PubMedCrossRefGoogle Scholar
  25. Li, J., Pereira, S., Van Belle, P., Tsui, P., Elder, D., Speicher, D., Deen, K., Linnenbach, A., Somasundaram, R., Swoboda, R., and Herlyn, D. (2001). Isolation of the melanoma-associated antigen p23 using antibody phage display. J. Immunol. 166, 432–438.PubMedGoogle Scholar
  26. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty. J., Griffiths, A.D., and Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol 222, 581–597.PubMedCrossRefGoogle Scholar
  27. Mascola, J.R. (2002). Passive transfer studies to elucidate the role of antibody-mediated protection against HIV-1. Vaccine 20, 1922–1925.PubMedCrossRefGoogle Scholar
  28. Mascola, J.R., Lewis, M.G., Stiegler, G., Harris, D., Van Cott, T.C, Hayes, D., Louder, M.K., Brown, C.R., Sapan, C.V., Frankel, S.S., Lu, Y., Robb, M.L., Katinger, H., and Birx, D.L. (1999). Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018.PubMedGoogle Scholar
  29. Mascola,J.R., Stiegler,G., VanCott,T.C, Katinger,H., Carpenter,C.B., Hanson,C.E., Beary,H., Hayes,D., Frankel,S.S., Birx,D.L., and Lewis,M.G. (2000). Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207-210.Google Scholar
  30. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.PubMedCrossRefGoogle Scholar
  31. Messmer, B.T. and Thaler, D.S. (2001). Specific blocking to improve biopanning in biological samples such as serum and hybridoma supernatants. Biotechniques 30, 798–802.PubMedGoogle Scholar
  32. Moreno, D.A., Martinez-alonso, C, Barbas, C.F., Burton, D.R., and Ditzel, H.J. (1995). Human monoclonal Fab fragments specific for viral antigens from combinatorial IgA libraries. Immunotechnology. 1, 21–28.CrossRefGoogle Scholar
  33. Moulard, M., Lortat-Jacob, H., Mondor, I., Roca, G., Wyatt, R., Sodroski, J., Zhao, L., Olson, W., Kwong, P.D., and Sattentau, Q.J. (2000). Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gpl20. J. Virol. 74, 1948–1960.PubMedCrossRefGoogle Scholar
  34. Moulard, M., Phogat, S.K., Shu, Y., Labrijn, A.F., Xiao, X., Binley, J.M., Zhang, M.Y., Sidorov, J.A., Broder, C.C, Robinson, J., Parren, P.W., Burton, D.R., and Dimitrov, D.S. (2002). Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gpl20-CD4-CCR5 complexes. Proc. Natl. Acad. Sci. U. S. A 99, 6913–6918.PubMedCrossRefGoogle Scholar
  35. Parren, P.W. and Burton, D.R. (1997). Antibodies against HIV-1 from phage display libraries: mapping of an immune response and progress towards antiviral immunotherapy. Chem. Immunol. 65, 18–56.PubMedCrossRefGoogle Scholar
  36. Parren, P.W., Marx, P.A., Hessell, A.J., Luckay, A., Harouse, J., Cheng-Mayer, C, Moore, J.P., and Burton, D.R. (2001). Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75, 8340–8347.PubMedCrossRefGoogle Scholar
  37. Parren, P.W., Wang, M., Trkola, A., Binley, J.M, Purtscher, M., Katinger, H., Moore, J.P., and Burton, D.R. (1998). Antibody neutralization-resistant primary isolates of human immunodeficiency virus type 1. J. Virol. 72, 10270–10274.PubMedGoogle Scholar
  38. Poignard, P., Moulard, M, Golez, E., Vivona, V., Franti, M., Venturini, S., Wang, M., Parren, P.W., and Burton, D.R. (2003). Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies. J. Virol. 77, 353–365.PubMedCrossRefGoogle Scholar
  39. Ruprecht, R.M., Hofmann-Lehmann, R., Smith-Franklin, B.A., Rasmussen, R.A., Liska, V., Vlasak, J., Xu, W., Baba, T.W., Chenine, A.L., Cavacini, L.A., Posner, M.R., Katinger, H., Stiegler, G., Bernacky, B.J., Rizvi, T.A., Schmidt, R., Hill, L.R., Keeling, M.E., Montefiori, D.C, and McClure, H.M. (2001). Protection of neonatal macaques against experimental SHIV infection by human neutralizing monoclonal antibodies. Transfus. Clin. Biol 8, 350–358.PubMedCrossRefGoogle Scholar
  40. Sawyer, C., Embleton, J., and Dean, C. (1997). Methodology for selection of human antibodies to membrane proteins from a phage-display library. J. Immunol. Methods 204, 193–203.PubMedCrossRefGoogle Scholar
  41. Schier, R., Balint, R.F., McCall, A., Apell, G., Larrick, J.W., and Marks, J.D. (1996a). Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169, 147–155.PubMedCrossRefGoogle Scholar
  42. Schier, R., Bye, J., Apell, G., McCall, A., Adams, G.P., Malmqvist, M., Weiner, L.M., and Marks, J.D. (1996b). Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43.PubMedCrossRefGoogle Scholar
  43. Schier, R. and Marks, J.D. (1996). Efficient in vitro affinity maturation of phage antibodies using BIAcore guided selections. Hum. Antibodies Hybridomas 7, 97–105.PubMedGoogle Scholar
  44. Schier, R., McCall, A., Adams, G.P., Marshall, K.W., Merritt, H., Yim, M., Crawford, R.S., Weiner, L.M., Marks, C, and Marks, J.D. (1996c). Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567.PubMedCrossRefGoogle Scholar
  45. Shibata, R., Igarashi, T., Haigwood, N., Buckler-White, A., Ogert, R., Ross, W., Willey, R., Cho, M.W., and Martin, M.A. (1999). Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 5, 204–210.PubMedCrossRefGoogle Scholar
  46. Stiegler, G., Armbruster, C, Vcelar, B., Stoiber, H., Kunert, R., Michael, N.L., Jagodzinski, L.L., Ammann, C, Jager, W., Jacobson, J., Vetter, N., and Katinger, H. (2002). Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in asymptomatic HIV-1-infected humans: a phase I evaluation. AIDS 16, 2019–2025.PubMedCrossRefGoogle Scholar
  47. Toran, J.L., Kremer, L., Sanchez-Pulido, L., de Alboran. I.M., del Real, G., Llorente, M., Valencia, A., de Mon, M.A., and Martinez, A. (1999). Molecular analysis of HIV-1 gpl20 antibody response using isotype IgM and IgG phage display libraries from a long-term non-progressor HIV-1-infected individual. Eur. J. Immunol. 29, 2666–2675.PubMedCrossRefGoogle Scholar
  48. Trepel, M., Arap, W., and Pasqualini, R. (2002). In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. 6, 399–404.PubMedCrossRefGoogle Scholar
  49. Van Ewijk, W., de Kruif, J., Germeraad, W.T., Berendes, P., Ropke, C, Platenburg, P.P., and Logtenberg, T. (1997). Subtractive isolation of phage-displayed single-chain antibodies to thymic stromal cells by using intact thymic fragments. Proc. Natl. Acad. Sci. U. S. A 94, 3903–3908.PubMedCrossRefGoogle Scholar
  50. Veazey, R.S., Shattock, R.J., Pope, M., Kirijan, J.C., Jones, J., Hu, Q., Ketas, T., Marx, P.A., Klasse, P.J., Burton, D.R., and Moore, J.P. (2003). Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gpl20. Nat. Med. 9, 343–346.PubMedCrossRefGoogle Scholar
  51. Vujcic, L.K. and Quinnan, G.V., Jr. (1995). Preparation and characterization of human HIV type 1 neutralizing reference sera. AIDS Res. Hum. Retroviruses 11, 783–787.PubMedCrossRefGoogle Scholar
  52. Williams, B.R., Sompuram, S.R., and Sharon, J. (2002). Generation of anti-colorectal cancer fab phage display libraries with a high percentage of diverse antigen-reactive clones. Comb. Chem. High Throughput. Screen. 5, 489–499.PubMedCrossRefGoogle Scholar
  53. Williamson, R.A., Burioni, R., Sanna, P.P., Partridge, L.J., Barbas, C.F., III, and Burton, D.R. (1993a). Human monoclonal antibodies against a plethora of viral pathogens from single combinatorial libraries. Proc. Natl. Acad. Sci. U. S. A 90, 4141–4145.PubMedCrossRefGoogle Scholar
  54. Williamson, R.A., Burioni, R., Sanna, P.P., Partridge, L.J., Barbas, C.F., and Burton, D.R. (1993b). Human monoclonal antibodies against a plethora of viral pathogens from single combinatorial libraries [published erratum appears in Proc Natl Acad Sci U S A 1994 Feb 1;91(3):1193]. Proc. Natl. Acad. Sci. U. S. A. 90, 4141–4145.PubMedCrossRefGoogle Scholar
  55. Xu, W., Hofrnann-Lehmann, R., McClure, H.M., and Ruprecht, R.M. (2002). Passive immunization with human neutralizing monoclonal antibodies: correlates of protective immunity against HIV. Vaccine 20, 1956–1960.PubMedCrossRefGoogle Scholar
  56. Zwick, M.B., Bonnycastle, L.L., Menendez, A., Irving, M.B., Barbas, C.F., III, Parren, P.W., Burton, D.R., and Scott, J.K. (2001a). Identification and Characterization of a Peptide That Specifically Binds the Human, Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody bl2. J. Virol. 75, 6692–6699.PubMedCrossRefGoogle Scholar
  57. Zwick, M.B., Labrijn, A.F., Wang, M., Spenlehauer, C, Saphire, E.O., Binley, J.M., Moore, J.P., Stiegler, G., Katinger, H., Burton, D.R., and Parren, P.W. (2001b). Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 75, 10892–10905.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.BioCytexMarseilleFrance
  2. 2.Laboratory of Experimental and Computational BiologyCenter for Cancer Research, NCI-Frederick, NIHMiller Drive, FrederickUSA
  3. 3.BRP, SAIC-FredericK Inc.Miller Drive, FrederickUSA

Personalised recommendations