Antibodies pp 79-103 | Cite as

Approaches to Devise Antibody Purification Processes by Chromatography



Monoclonal antibodies and more largely immunoglobulins along with all their fragments and engineered forms represent today the largest class of produced and purified protein in number and quantity. New potential applications of antibodies in their native form or various engineered constructs actually continue to stimulate therapeutic areas. Expected high dosage levels imply that their purity has to meet stringent requirements. It means also that the production cost per dose compared to other therapeutic biomolecules has to be kept low. To achieve these goals it is anticipated that effective, low cost productions and purification strategies will be put in place.


Cell Culture Supernatant Cheese Whey Synthetic Ligand Affinity Sorbent Antibody Purification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerstrom B., Bjorck L. A physicochemical study of protein G, a molecule with unique immunoglobulin G-binding properties. J. Biol. Chem. 1986; 261: 10240–7.PubMedGoogle Scholar
  2. Arguelles M.E., Alonso M., Garcia-Suarez M.D., Barneo L., Sampedro A., de los Toyos J.R. Performance of thiophilic adsorption chromatography in the purification of rat IgG2b monoclonal antibodies from serum-and protein-free culture supematants. Biomed. Chromatogr. 1999; 13: 379–81.PubMedCrossRefGoogle Scholar
  3. Bazin H., Xhurdebise L. M., Burtonboy G., Lebacq A. M., De Clercq L., Cormont F. Rat monoclonal antibodies. I. Rapid purification from in vitro culture supematants. J. Immunol. Methods. 1984a; 66: 261–9.CrossRefGoogle Scholar
  4. Bazin H., Cormont F., De Clercq L. Rat monoclonal antibodies. II. A rapid and efficient method of purification from ascitic fluid or serum. J. Immunol. Methods. 1984b; 71: 9–16.CrossRefGoogle Scholar
  5. Belew M., Juntti N., Larsson A., Porath J. A one-step purification method for monoclonal antibodies based on salt-promoted adsorption chromatography on a ‘thiophilic’ adsorbent., J. Immunol. Meth. 1987; 102: 173–82.CrossRefGoogle Scholar
  6. Birkenmeier S.B., Kopperschlager G. Application of phase partitioning and thiophilic adsorption chromatography to the purification of monoclonal antibodies from cell culture fluid. J. Immunol. Meth. 1992; 149: 165–61.CrossRefGoogle Scholar
  7. Bog-Hansen T.C. Separation of monoclonal antibodies from cell culture supematants and ascites fluid using thiophilic agarose. Mol. Biotechnol. 1997; 8: 279–81.PubMedCrossRefGoogle Scholar
  8. Bonnerjea J., Oh S., Hoare M., Dunnill P., Protein purification: the right step at the right time. Biotechnology. 1986; 4: 954–58.CrossRefGoogle Scholar
  9. Boschetti E., Jungbauer A. “Separation of antibodies by liquid chromatography.” In: Handbook of Biosepartions Vol 2, S. Ahuja ed. Acad. Press, 2000, pp 535–632.Google Scholar
  10. Boschetti, E. The use of thiophilic chromatography for antibody purification: a review. J. Biochem. Biophys. Meth. 2001a; 49: 361–89.CrossRefGoogle Scholar
  11. Boschetti E., Guerrier L. Purification of antibodies by HCIC and impact of ligand structure. I. J. BioChromatogr. 2001b; 6: 269–83.Google Scholar
  12. Boschetti E., Girot P. “Ion exchange interaction biochromatography.” In: Biochromatography, Theory and Practice. M.A. Vijiayalakshmi ed. Taylor and Francis publisher., 2002a, pp. 24–45.Google Scholar
  13. Boschetti E. Separation of antibodies by hydrophobic charge induction chromatography. Trends Biotechnol. 2002b; 20: 333–7.CrossRefGoogle Scholar
  14. Bridonneau P., Lederer F. Bahaviour of immunoglobulin G subclasses on thiophilic gels: comparison with hydrophobic interaction chromatography. J. Chromatogr. 1993; 616: 197–204.PubMedCrossRefGoogle Scholar
  15. Burton D. R. Immunoglobulins G: functional sites. Mol. Immunol. 1985; 22: 161–206.PubMedCrossRefGoogle Scholar
  16. Carlsson M., Hedin A., Inganas M., Harfast B., Blomberg, F. Purification of in vitro produced mouse monoclonal antibodies. A two-step procedure utilizing cation exchange chromatography and gel filtration. J. Immunol. Methods. 1985; 79: 89–98.PubMedCrossRefGoogle Scholar
  17. Carlson J., lanson J. C, Sparrman M. « Affinity Chromatography.” In: Protein purification: principles, high resolution methods, and applications. A John Wiley & sons, Inc., New York. 1988.Google Scholar
  18. Chaga G.S. Twenty-five years of immobilized metal ion affinity chromatography: past present and future. J. Biochem. Biophys. Meth. 2001; 49: 313–34.PubMedCrossRefGoogle Scholar
  19. Chen F. M., Naeve G. S., Epstein A. L. Comparison of mono Q, superose-6, and ABx fast protein liquid chromatography for the purification of IgM monoclonal antibodies. J. Chromatogr. 1988; 444: 153–64.PubMedCrossRefGoogle Scholar
  20. Danielsson A., Ljunglof A., Lindblom H. One-step purification of monoclonal IgG antibodies from mouse ascites. An evaluation of different adsorption techniques using high performance liquid chromatography. J. Immunol. Methods. 1988; 115: 79–88.PubMedCrossRefGoogle Scholar
  21. Duffy S., Moellering B. J., Prior G. M., Doyle K. R., Prior C. P. Recovery of Therapeutic-grade of antibodies: Protein A and ion exchange chromatography. BioPharm. 1989; June: 35–47.Google Scholar
  22. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978; 15:429–36.PubMedCrossRefGoogle Scholar
  23. El-Kak A., Manjiny S. Vijayalakshmi M. A. Interaction of immunoglobulin G(IgG) with immobilized histidine: Mechanistic and kinetic aspects. J. Chromatogr. 1992; 604: 29–37.PubMedCrossRefGoogle Scholar
  24. El-Rassi Z., Horvath, C. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support. J. Chromatogr. 1986; 359: 241–53.PubMedCrossRefGoogle Scholar
  25. Fuglistaller P. Comparison of immunoglobulin binding capacities and ligand leakage using eight different protein A affinity chromatography matrices. J. Immunol. Methods. 1989; 124: 171–7.PubMedCrossRefGoogle Scholar
  26. Fassina G., Verdoliva A., Palombo G., Ruvo M. Cassani G. Immunoglobulin specificity of TG 19318: a novel synthetic ligand for antibody affinity purification. J. Mol. Recognit. 1998; 11:128–33.PubMedCrossRefGoogle Scholar
  27. Fassina G, Ruvo M, Palombo G, Verdoliva A, Marino M. Novel ligands for the affinity-chromatographic purification of antibodies. J. Biochem. Biophys. Methods. 2001; 49: 481–90.PubMedCrossRefGoogle Scholar
  28. Gaberc-Porekar V., Menart V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Meth. 2001; 49: 335–60.PubMedCrossRefGoogle Scholar
  29. Gelotte B. Studies on gel filtration sorption properties of the bed material Sephadex. J. Chromatogr. 1960; 3: 330–42.CrossRefGoogle Scholar
  30. Godfrey M.A., Kwasowwski P., Clift R., Marks V. Assessment of the suitability of commercially available SpA affinity solid phases for the purification of murine monoclonal antibodies at process scale. J. Immunol. Meth. 1993; 160: 97–105.CrossRefGoogle Scholar
  31. Guerrier L., Flayeux I., Schwarz A., Fassina G., Boschetti, E. IRIS 97: an innovating Protein A-peptidomimetic solid phase media for antibody purification. J. Mol. Recognit 1998; 11: 1–3.CrossRefGoogle Scholar
  32. Hale J. E., Beidler D. E. Purification of humanized murine and murine monoclonal antibodies using immobilized metal-affinity chromatography. Anal. Biochem. 1994; 222: 29–33.PubMedCrossRefGoogle Scholar
  33. Hansen P., Scoble J.A., Hanson B., Hoogenraad N.J. Isolation and purification of immunoglobulins from chicken eggs using thiophilic interaction chromatography. J. Immunol. Meth. 1998; 215: 1–7.CrossRefGoogle Scholar
  34. Hutchens T.W., Porath J. Thiophilic adsorption of immunoglobulins-analysis of conditions optimal for selective immobilization and purification. Anal. Biochem. 1986; 159: 217–26.PubMedCrossRefGoogle Scholar
  35. Jiskoot W, Van Hertrooij JJ, Klein Gebbinck JW, Van der Velden-de Groot T, Crommelin DJ, Beuvery EC. Two-step purification of a murine monoclonal antibody intended for therapeutic application in man. Optimisation of purification conditions and scaling up. J. Immunol. Methods. 1989; 124: 143–56.PubMedCrossRefGoogle Scholar
  36. Konecny P., Brown R.J., Scouten W.H. Chromatographic purification of immunoglobulin G from bovine milk whey. J. Chromatogr. 1994; 673: 45–53.CrossRefGoogle Scholar
  37. Lewis J.A., Lommen D.C., Raddatz W.D., Dolan J.W., Snyder L.R., Molnar I.J. Computer simulation for the prediction of separation as a function of pH for reversed-phase high-performance liquid chromatography. I. Accuracy of a theory-based model. J. Chromatogr. 1992; 502: 183–95.Google Scholar
  38. Li R., Dowd V., Stewart D. J., Burton S. J., and Lowe C. R. Design, synthesis and application of a Protein A mimetic. Nat. Biotechnol. 1998; 16: 190–5.PubMedCrossRefGoogle Scholar
  39. Li-Chan E., Kwan L., Nakai S. Isolation of immunoglobulins by competitive displacement of cheese whey proteins during metal chelate interaction chromatography. J. Diary Sci. 1990; 73: 2075–86.CrossRefGoogle Scholar
  40. Lihme A., Bendix-Hansen M. Protein A mimetic for large scale monoclonal antibody purification. Biotechnology Laboratory 1997; 15: 30–1.Google Scholar
  41. McLaren R. D., Prosser C. G., Grieve R. C, Borissenko M. The use of caprylic acid for the extraction of the immunoglobulin fraction from egg yolk of chickens immunised with ovine alpha-lactalbumin. J. Immunol. Methods. 1994; 177: 175–84.PubMedCrossRefGoogle Scholar
  42. Mohan S. B., Lyddiatt A. “Recent developments in affinity separation technologies.” In Affinity separations. IRL Press, Oxford. 1997; ppl–38.Google Scholar
  43. Moks T., Abrahmsen L., Nilsson B., Hellman U., Sjoquist J., Uhlen M. Staphylococcal protein A consists of five IgG-binding domains. Eur. J Biochem. 1986; 156: 637–43.PubMedCrossRefGoogle Scholar
  44. Necina R., Amatschek K., Jungbauer A. Capture of human monoclonal antibodies from cell culture supernatant by ion exchange media exhibiting high charge density. Biotechnol. Bioeng. 1998; 60: 679–98.CrossRefGoogle Scholar
  45. Ngo T. T., Khatter N., and Avid A. L. A synthetic ligand affinity gel mimicking immobilized bacterial antibody receptor for purification of immunoglobulin G. J. Chromatogr. 1992; 597: 101–9.PubMedCrossRefGoogle Scholar
  46. Ngo T.T. Rapid purification of immunoglobulin G using aza-arenophilic chromatography: novel mode of protein solid phase interactions. J. Chromatogr. 1994; 662: 351–6.CrossRefGoogle Scholar
  47. Nilson B. H., Logdberg L., Kastern W., Bjorck L., Akerstrom B. Purification of antibodies using protein L-binding framework structures in the light chain variable domain. J. Immunol. Meth. 1993; 164: 33–40.CrossRefGoogle Scholar
  48. Oscarson S., Porath J. Protein Chromatography with pyridine-and alkyl-thioether-based agarose adsorbents. J. Chromatogr. 1990; 499: 235–47.CrossRefGoogle Scholar
  49. Ostlund C. Large-scale purification of monoclonal antibodies. Trends in Biotechnology. 1986; 4: 288–293.CrossRefGoogle Scholar
  50. Palombo G., Verdoliva A., Fassina G. Affinity purification of immunoglobulin M using a novel synthetic ligand. J. Chromatogr. 1998; 715: 137–45.CrossRefGoogle Scholar
  51. Patapoff T.W., Marnsy R.J., Lee W.A. The application of size exclusion chromatography and computer simulation to study the thermodynamic and kinetic parameters for short-lived dissociable protein aggregates. Anal. Biochem. 1993; 212: 71–8.PubMedCrossRefGoogle Scholar
  52. Peng L., Calton G. J., Burnett J. W. Stability of antibody attachement in immunosorbent chromatography. Enzyme Microbiol. Technol.. 1986; 8: 681–5.CrossRefGoogle Scholar
  53. Porath J., Biochem Biophys Acta, 1960; 50: 193.CrossRefGoogle Scholar
  54. Porath J., Olin B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel immobilized iron and nickel ions. Biochemistry. 1983; 22: 1621–30.PubMedCrossRefGoogle Scholar
  55. Porath J., Maisano F., Belew M. Thiophilic adsorption-a new method for protein fractionation. FEBS Lett. 1985; 185: 306–10.PubMedCrossRefGoogle Scholar
  56. Porath J., Belew M. ‘Thiophilic’ interaction and the selective adsorption of proteins. Tibtech. 1987; 5: 225–9.CrossRefGoogle Scholar
  57. Porath J., Oscarsson S. A new kind of “thiophilic” electron-donor-acceptor adsorbent., Makromol. Chem. Macromol. Synth. 1988; 17: 359–71.CrossRefGoogle Scholar
  58. Scholz G. H., Wippich P., Leistner S., Huse K. Salt-independent binding of antibodies from human serum to thiophilic heterocyclic ligands. J. Chromatogr. 1998a; 709: 189–96.CrossRefGoogle Scholar
  59. Scholz G. H., Vieweg S., Leistner S., J. S., Scherbaum W. A., Huse K. A simplified procedure for the isolation of immunoglobulins from human serum using a novel type of thiophilic gel at low salt concentration. J. Immunol. Meth. 1998b; 219: 109–18.CrossRefGoogle Scholar
  60. Sharma S. K. “Designer affinity purification of recombinant proteins.” In: Affinity separations, a practical approach. Oxford University Press, Oxford. 1997, pp 197–218.Google Scholar
  61. Shiloach J., Santambien P., Trinh L., Schapman A., Boschetti E. Endostatin capture from P. pastoris culture on fluidized bed: from on-chip process optimization to application. J. Chromatogr. 2003; 790: 327–36.CrossRefGoogle Scholar
  62. Sulkowsky E. Purification of proteins by IMAC. Trends Biotechnol. 1985; 3: 1–3.CrossRefGoogle Scholar
  63. Teng SF, Sproule K, Hussain A, Lowe CR. A strategy for the generation of biomimetic ligands for affinity chromatography. Combinatorial synthesis and biological evaluation of an IgG binding ligand. J. Mol. Recognit. 1999; 12: 67–75.PubMedCrossRefGoogle Scholar
  64. Teng SF, Sproule K, Husain A, Lowe CR. Affinity chromatography on immobilized “biomimetic” ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand. J. Chromatogr. 2000; 740:1–15.CrossRefGoogle Scholar
  65. Weinberger S., Boschetti E., Santambien P., Brenac V. Surface enhanced laser desorption/ionization retentate chromatography mass spectrometry (SELDI-RC-MS): a new method for rapid development of process chromatography conditions. J. Chromatogr. 2002; 782: 307–16.CrossRefGoogle Scholar
  66. Wheelwright S.M. The design of downstream process for large-scale protein purification. J. Biotechnology. 1989; 11:89–102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.Ciphergen Biosystems — BiosepraCergyFrance

Personalised recommendations