Advertisement

Antibodies pp 13-52 | Cite as

Generation, Engineering and Production of Human Antibodies Using Hucal®

Chapter

Abstract

It is almost three decades since Köhler and Milstein published their work on the use of cell fusion for the production of monoclonal antibodies from immunized mice (Köhler & Milstein, 1975). The technique was rapidly and widely adopted and has provided an enormous repertoire of useful research reagents (Little et al., 2000). On the other hand, these antibodies have had limited success in human therapy (Glennie & Johnson, 2000). One reason is that murine antibodies often cause immune response in humans and lead to the generation of human anti-mouse antibodies (HAMA reaction), limiting the efficacy in long term and repeated administration (Jaffers et al., 1986; Schellekens, 2002). Only in certain indications, e.g. for the treatment of immuno-suppressed cancer patients, murine antibodies can be used. Two examples are the radioisotope conjugated murine anti-CD20 antibodies Bexxar® (tositumomab) and Zevalin™ (ibritumomab), which are both applied for treatment of lymphoma. The development of genetic engineering has allowed the conversion of existing mouse monoclonal antibodies into chimeric mouse-human antibodies, and humanised molecules where only the complementarity-determining regions (CDR) are of murine origin (Queen et al., 1989). To date, 13 therapeutic antibodies have obtained regulatory approval. Nowadays it is also possible to generate fully human antibodies, using either transgenic mice (Kellermann & Green, 2002), or in vitro technologies like phage display (Kretzschmar & von Rüden, 2002), ribosomal display (Hanes et al, 2001), bacterial display (Chen & Georgiou, 2002) or yeast display (Boder & Wittrup, 2000).

Keywords

Phage Display Antibody Fragment Human Antibody Antibody Format Therapeutic Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. D., Kerlavage, A. R., Fleischmann, R. D., Fuldner, R. A., Bult, C. J., Lee, N. H., Kirkness, E. F., Weinstock, K. G., Gocayne, J. D. and White, O., 1995, Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377(6547 Suppl): 3–174.PubMedGoogle Scholar
  2. Bachelez, H., Flageul, B., Dubertret, L., Fraitag, S., Grossman, R., Brousse, N., Poisson, D., Knowles, R.W., Wacholtz, M.C., Haverty, T.P., Chatenoud, L., and Bach, J.F., 1998, Treatment of recalcitrant plaque psoriasis with a humanized non-depleting antibody to CD4. J. Autoimmun. 11: 53–62.PubMedCrossRefGoogle Scholar
  3. Baker, K.N., Rendall, M.H., Hills, A.E., Hoare, M, Freedman, R.B., and James, D.C., 2001, Metabolic control of recombinant protein N-glycan processing in NSO and CHO cells. Biotechnol. Bioeng. 73: 188–202.PubMedCrossRefGoogle Scholar
  4. Bakker, H., Bardor, M, Molthoff, J.W., Gomord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., and Bosch, D., 2001, Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. USA 98: 2899–2904.PubMedCrossRefGoogle Scholar
  5. Barbas, C.F. III. and Burton, D.R., 1996, Selection and evolution of high-affinity human antiviral antibodies. Trends Biotechnol. 14: 230–234PubMedCrossRefGoogle Scholar
  6. Basilico, C. and Moscatelli, D., 1992, The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59: 115–165PubMedCrossRefGoogle Scholar
  7. Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H., 1988, Escherichia coli secretion of an active chimeric antibody fragment. Science, 240: 1041–1043.PubMedCrossRefGoogle Scholar
  8. Boder, E. T. and Wittrup, K. D., 2000, Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol. 328:430–444.PubMedCrossRefGoogle Scholar
  9. Bothmann, H. and Plückthun, A., 1998, Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16: 376–380.PubMedCrossRefGoogle Scholar
  10. Brandts, J.F., Hu, C.Q., Lin, L.N., and Mos, M.T., 1989, A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry, 28: 8588–8596.PubMedCrossRefGoogle Scholar
  11. Breedveld, F.C., 2000, Therapeutic monoclonal antibodies. Lancet, 355: 735–740.PubMedCrossRefGoogle Scholar
  12. Bridges, S.H., Kruisbeek, A.M., and Longo, D.L., 1987, Selective in vivo antitumour effects of monoclonal anti-I-A antibody on B cell lymphoma. J. Immunol. 139: 4242–4249PubMedGoogle Scholar
  13. Buchner, J. and Rudolph, R., 1991, Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N. Y.), 9: 157–162.CrossRefGoogle Scholar
  14. Burke, D., Wilkes, D., Blundell, T.L., and Malcolm, S., 1998, Fibroblast growth factor receptors: lessons from the genes. Trends Biochem. Sci. 23: 59–62PubMedCrossRefGoogle Scholar
  15. Cahill, D.J., 2001, Protein and antibody arrays and their medical applications. J. Immunol. Methods, 250: 81–91.PubMedCrossRefGoogle Scholar
  16. Carayannopoulos, L., Max, E.E., and Capra, J.D., 1994, Recombinant human IgA expressed in insect cells. Proc. Natl. Acad. Sci. U. S. A, 91: 8348–8352.PubMedCrossRefGoogle Scholar
  17. Carter, P., 2001, Bispecific human IgG by design. J. Immunol. Methods, 248: 7–15.PubMedCrossRefGoogle Scholar
  18. Chapman, A.P., Antoniw, P., Spitali, M., West, S., Stephens, S., and King, D.J., 1999, Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol, 17: 780–783.PubMedCrossRefGoogle Scholar
  19. Chapman, A.P., 2002, PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev., 54: 531–545.PubMedCrossRefGoogle Scholar
  20. Chen, W., and Georgiou, G., 2002, Cell-surface display of heterologous proteins: From high-throughput screening to environmental applications. Biotechnol. Bioeng. 79:496–503.PubMedCrossRefGoogle Scholar
  21. Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H.W., McKay, P., de Vos, A.M., and Lowman, H.B., 1999, Selection and analysis of an optimised anti-VEGF antibody: Crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293: 865–881PubMedCrossRefGoogle Scholar
  22. Chesi, M., Brents, L.A., Ely, S.A., Bais, C., Robbiani, D.F., Mesri, E.A., Kuehl, W.M., and Bergsagel, P.L., 2001, Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumour progression in multiple myeloma. Blood 97: 729–736PubMedCrossRefGoogle Scholar
  23. Cho, M.S., Yee, H., Brown, C., Mei, B., Mirenda, C., and Chan, S., 2003, Versatile expression system for rapid and stable production of recombinant proteins. Biotechnol. Prog, 19: 229–232.PubMedCrossRefGoogle Scholar
  24. Choy, E.H., Hazleman, B., Smith, M., Moss, K., Lisi, L., Scott, D.G., Patel, J., Sopwith, M., and Isenberg, D.A., 2002, Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford), 41: 1133–1137.CrossRefGoogle Scholar
  25. Davis, T.A., Grillo-Lopez, A.J., White, C.A., McLaughlin, P., Czuczman, M.S., Link, B.K., Maloney, D.G., Weaver, R.L., Rosenberg, J., and Levy, R., 2000, Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J. Clin. Oncol., 18: 3135–3143.PubMedGoogle Scholar
  26. de Haard, H. J., van Neer, N., Reurs, A., Hufton, S. E., Roovers, R. C, Henderikx, P., de Bruine, A. P., Arends, J.-W. and Hoogenboom, H., 1999, A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274: 18218–18230.PubMedCrossRefGoogle Scholar
  27. de Wildt, R.M., Mundy, C.R., Gorick, B.D., and Tomlinson, I.M., 2000, Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18: 989–994.PubMedCrossRefGoogle Scholar
  28. Diamond, M.S., Staunton, D.E., Marlin, S.D., and Springer, T.A., 1991, Binding of the integrin Mac-1 (CD1 lb/CD 18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971PubMedCrossRefGoogle Scholar
  29. Dougherty, G.J., Murdoch, S., and Hogg, N., 1988, The fonction of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response. Eur. J. Immunol. 18: 35–39PubMedCrossRefGoogle Scholar
  30. Dreier, T., Lorenczewski, G., Brandi, C., Hoffmann, P., Syring, U., Hanakam, F., Kufer, P., Riethmüller, G., Bargou, R., Baeuerle, P. A., 2002, Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalysed by a single chain bispecific antibody. Int. J. Cancer 100: 690–697.PubMedCrossRefGoogle Scholar
  31. Dustin, M.L., Rothlein, R., Bhan, A.K., Dinarello, C.A., and Springer, T.A., 1986, Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137: 245–254PubMedGoogle Scholar
  32. Eickhoff, H., Konthur, Z., Lueking, A., Lehrach, H., Walter, G., Nordhoff, E., Nyarsik, L. and Bussow, K., 2002, Protein array technology: the tool to bridge genomics and proteomics. Adv. Biochem. Eng. Biotechnol. 77: 103–112.PubMedGoogle Scholar
  33. Ewert, S., Honegger, A. and Plückthun, A., 2003b, Structure-based improvement of the biophysical properties of immunoglobulin v(h) domains with a generalizable approach. Biochemistry, 42: 1517–1528.CrossRefGoogle Scholar
  34. Ewert, S., Huber, T., Honegger, A. and Pliickthun, A., 2003a, Biophysical properties of human antibody variable domains. J. Mol. Biol. 325: 531–553.CrossRefGoogle Scholar
  35. Forsberg, G., Forsgren, M., Jaki, M., Norm, M., Sterky, C., Enhorning, A., Larsson, K., Ericsson, M. and Bjork, P., 1997, Identification of framework residues in a secreted recombinant antibody fragment that control production level and localization in Escherichia coli. J. Biol. Chem. 272: 12430–12436.Google Scholar
  36. Frisch, C., Brocks, B., Ostendorp, R., Hoess, A., von Rüden, T. and Kretzschmar, T., 2003, From EST to IHC: human antibody pipeline for target research. J. Immunol. Methods 275: 203–212.PubMedCrossRefGoogle Scholar
  37. Gessner, J.E., Heiken, H., Tamm, A., and Schmidt, R.E., 1998, The IgG Fc receptor family. Ann. Hematol. 76: 231–248.PubMedCrossRefGoogle Scholar
  38. Glennie, M. J. and Johnson, P. W. M., 2000, Clinical trials of antibody therapy. Immunol. Today 21: 403–410.PubMedCrossRefGoogle Scholar
  39. Griffiths, A. D., Williams, S. C, Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., Kontermann, R. E., Jones, P. T., Low, N. M., Allison, T. J., Prospera, T. D., Hoogenboom, H. R., Nissim, A., Cox, J. P. L., Harrison, J. L., Zaccolo, M., Gherardi, E. and Winter, G., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.PubMedGoogle Scholar
  40. Griffiths, A.D. and Duncan, A.R., 1998, Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9: 102–108.PubMedCrossRefGoogle Scholar
  41. Grillo-Lopez, A.J., 2002, Zevalin: the first radioimmunotherapy approved for the treatment of lymphoma. Expert Rev. Anticancer Ther. 2: 485–493.PubMedCrossRefGoogle Scholar
  42. Gumpert, J. and Hoischen, C., 1998, Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. Curr. Opin. Biotechnol. 9: 506–509.PubMedCrossRefGoogle Scholar
  43. Gura, T. 2002, Therapeutic antibodies: magic bullets hit the target. Nature 417: 584–586.PubMedCrossRefGoogle Scholar
  44. Haab, B.B., Dunham, M.J., and Brown, P.O., 2001, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2: RESEARCH0004.Google Scholar
  45. Hanes, J., Jermutus, L. and Plilckthun, A., 2000, Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328: 404–430.PubMedCrossRefGoogle Scholar
  46. Harris, J.L. and Craik, C.S., 2000, Proteases: The tip of the iceberg. Cell 101: 136–137.CrossRefGoogle Scholar
  47. Hawkins, R.E., Russell, S.J. and Winter, G., 1992, Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226: 889–896.PubMedCrossRefGoogle Scholar
  48. Hayhurst, A. and Georgiou, G., 2001, High-throughput antibody isolation. Curr. Opin. Chem. Biol. 5: 683–689.PubMedCrossRefGoogle Scholar
  49. Hiniker, A. and Bardwell, J.C., 2003, Disulfide bond isomerisation in prokaryotes. Biochemistry 42: 1179–1185.PubMedCrossRefGoogle Scholar
  50. Holliger, P., Prospera, T. and Winter, G., 1993, “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90: 6444–6448.PubMedCrossRefGoogle Scholar
  51. Holliger, P. and Hoogenboom, H., 1998, Antibodies come back from the brink. Nat Biotechnol, 16: 1015–1016.PubMedCrossRefGoogle Scholar
  52. Hoogenboom, H.R., Lutgerink, J.T., Pelsers, M.M., Rousch, M.J., Coote, J., van Neer, N., de Bruine, A., van Nieuwenhoven, F.A., Glatz, J.F., and Arends, J.W., 1999, Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur. J. Biochem. 260: 774–784.PubMedCrossRefGoogle Scholar
  53. Hooper, J.D., Clements, J.A., Quigley, J.P., and Antails, T.M., 2001, Type II transmembrane serine protease. J. Biol. Chem. 276: 857–860.PubMedCrossRefGoogle Scholar
  54. Horn, U., Strittmatter, W., Krebber, A., Knupfer, U., Kujau, M., Wenderoth, R., Muller, K., Matzku, S., Plückthun, A., and Riesenberg, D., 1996, High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimised expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46: 524–532.Google Scholar
  55. Huls, G.A., Heijnen, I.A., Cuomo, M.E., Koningsberger, J.C., Wiegman, L., Boel, E., van der Vuurst de Vries, A.R., Loyson, S.A., Helfrich, W., van Berge Henegouwen, G.P., van Meijer, M., De Kruif, J. and Logtenberg, T., 1999, A recombinant, fully human monoclonal antibody with anti-tumour activity constructed from phage-displayed antibody fragments. Nature Biotech. 17: 276–281.CrossRefGoogle Scholar
  56. Humphreys, D.P., Chapman, A.P., Reeks, D.G., Lang, V. and Stephens, P.E., 1997, Formation of dimeric Fabs in Escherichia coli: effect of hinge size and isotype, presence of interchain disulphide bond, Fab’ expression levels, tail piece sequences and growth conditions. J. Immunol. Methods 209: 193–202.Google Scholar
  57. Humphreys, D.P., Vetterlein, O.M., Chapman, A.P., King, D.J., Antoniw, P., Suitters, A.J., Reeks, D.G., Parton, T.A., King, L.M., Smith, B.J., Lang, V. and Stephens, P.E., 1998, F(ab’)2 molecules made from Escherichia coli produced Fab’ with hinge sequences conferring increased serum survival in an animal model. J. Immunol. Methods 217: 1–10.PubMedCrossRefGoogle Scholar
  58. Humphreys, D.P. and Glover, D.J., 2001, Therapeutic antibody production technologies: molecules, applications, expression and purification. Curr. Opin. Drug Discov. Devel. 4: 172–185.PubMedGoogle Scholar
  59. Humphreys, D.P., Carrington, B., Bowering, L.C., Ganesh, R., Sehdev, M., Smith, B.J., King, L.M., Reeks, D.G., Lawson, A. and Popplewell, A.G., 2002, A plasmid system for optimisation of Fab(‘) production in Escherichia coli importance of balance of heavy chain and light chain synthesis. Protein Expr. Purif., 26: 309–320.Google Scholar
  60. Jaenicke, R. and Lilie, H., 2000, Folding and association of oligomeric and multimeric proteins. Adv. Protein Chem. 53: 329–401.PubMedCrossRefGoogle Scholar
  61. Jaenicke, R., Schurig, H., Beaucamp, N. and Ostendorp, R., 1996, Structure and stability of hyperstable proteins: glycolytic enzymes from the hyperthermophilic bacterium Thermotoga maritima. Adv. Protein Chem. 48: 181–269.PubMedCrossRefGoogle Scholar
  62. Jaffers, G., Fuller, T. C, Cosimi, A. B., Russell, P. S., Winn, H. J. and Colvin, R. B., 1986, Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41: 572–578.PubMedCrossRefGoogle Scholar
  63. Jefferis, R., Lund, J., and Pound, J.D., 1998, IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163: 59–76.PubMedCrossRefGoogle Scholar
  64. Jefferis, R. and Lund, J., 2002, Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol. Lett., 82: 57–65.PubMedCrossRefGoogle Scholar
  65. Jermutus, L., Ryabova, L.A. and Pliickthun, A., 1998, Recent advances in producing and selecting functional proteins by using cell-free translation. Curr. Opin. Biotechnol. 9: 534-548. Jiang, X., Ookubo, Y., Fujii, I., Nakano, H. and Yamane, T., 2002, Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBSLett. 514: 290–294.Google Scholar
  66. Jirholt, P., Ohlin, M., Borrebaeck, C. A. K. and Söderlind, E., 1998, Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215: 471–476.PubMedCrossRefGoogle Scholar
  67. Jones, D., Kroos, N., Anema, R., Van Montfort, B., Vooys, A., Van Der, K.S., Van Der, H.E., Smits, S., Schouten, J., Brouwer, K., Lagerwerf, F., Van Berkel, P., Opstelten, D.J., Logtenberg, T. and Bout, A., 2003, High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol. Prog. 19: 163-168.Google Scholar
  68. Joos, T. O., Stoll, D., Templin, M., Virnekäs, B., and Ostendorp, R., 2002, Method for the relative determination of physicochemical properties. WO 02/086494.Google Scholar
  69. Joos, T.O., Stoll, D. and Templin, M.F., 2002, Miniaturised multiplexed immunoassays. Curr. Opin. Chem. Biol. 6: 76–80.PubMedCrossRefGoogle Scholar
  70. Kellermann, S. A. and Green, L. L., 2002, Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr. Opin. Biotechnol. 13:593–597.PubMedCrossRefGoogle Scholar
  71. Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S., 1999, Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442: 15–19.PubMedCrossRefGoogle Scholar
  72. King, A., Boocock, C., Sharkey, A.M., Gardner, L., Beretta, A., Siccardi, A.G. and Loke, Y.W., 1996a, Evidence for the expression of HLA-C class I mRNA and protein by human first trimester trophoblast. J. Immunol. 156: 2068–2076.Google Scholar
  73. King, A., Burrows, T., and Locke, Y.W., 1996b, Human uterine natural killer cells. Nat. Immun. 15: 41–52.Google Scholar
  74. Kipriyanov, S.M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., der Lieth, C.W., Matys, E.R., and Little, M., 1999, Bispecific tandem diabody for tumour therapy with improved antigen binding and pharmacokinetics. J Mol Biol, 293: 41–56.PubMedCrossRefGoogle Scholar
  75. Klint, P. and Claesson-Welsh, L., 1999, Signal transduction by fibroblast growth factor receptors. Front. Biosci. 4: D165–177.PubMedCrossRefGoogle Scholar
  76. Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A. and Virnekäs, B., 2000, Fully synthetic Human Combinatorial Antibody Libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296: 57–86.PubMedCrossRefGoogle Scholar
  77. Köhler, G. and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.PubMedCrossRefGoogle Scholar
  78. Krebs, B., Rauchenberger, R., Reiffert, S., Rothe, C., Tesar, M., Thomassen, E., Cao, M., Dreier, T., Fischer, D., Höß, A., Inge, L., Knappik, A., Marget, M., Pack, P., Meng, X., Schier, R., Söhlemann, P., Winter, J., Wölle, J. and Kretzschmar, T., 2001, High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254: 67–84.PubMedCrossRefGoogle Scholar
  79. Kretzschmar, T. and von Rüden, T., 2002, Antibody discovery: phage display. Curr. Opin. Biotechnol. 13: 598–602.PubMedCrossRefGoogle Scholar
  80. Kujau, M.J., Hoischen, C., Riesenberg, D. and Gumpert, J., 1998, Expression and secretion of functional miniantibodies McPC603scFvDhlx in cell-wall-less L-form strains of Proteus mirabilis and Escherichia coli: a comparison of the synthesis capacities of L-form strains with an E. coli producer strain. Appl. Microbiol. Biotechnol. 49: 51–58.PubMedCrossRefGoogle Scholar
  81. Laden, J.C., Philibert, P., Torreilles, F., Pugniere, M. and Martineau, P., 2002, Expression and folding of an antibody fragment selected in vivo for high expression levels in Escherichia coli cytoplasm. Res. Microbiol. 153: 469–474.PubMedCrossRefGoogle Scholar
  82. Lesley, S.A., 2001, High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 22: 159–164.PubMedCrossRefGoogle Scholar
  83. Li, Z., Zhu, Y.X., Plowright, E.E., Bergsagel, P.L., Chesi, M., Patterson, B., Hawley, T.S., Hawley, R.G., and Stewart, A.K., 2001, The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood 97: 2413–2419.PubMedCrossRefGoogle Scholar
  84. Lilie, H., Lang, K., Rudolph, R. and Buchner, J., 1993, Prolyl isomerases catalyze antibody folding in vitro. Protein Sci. 2: 1490–1496.PubMedCrossRefGoogle Scholar
  85. Lin, C.Y., Anders, J., Johnson, M. and Dickson, R.B., 1999a, Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J. Biol. Chem. 274: 18237–18242.CrossRefGoogle Scholar
  86. Lin, C.Y., Anders, J., Johnson, M., Sang, Q.A., and Dickson, R.B., 1999b, Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J. Biol. Chem. 274: 18231–18236.CrossRefGoogle Scholar
  87. Little, M., Kipriyanov, S. M., Le Gall, F. and Moldenhauer, G., 2000, Of mice and men: hybridoma and recombinant antibodies. Immunol. Today 21: 364–370.PubMedCrossRefGoogle Scholar
  88. Löhning, C., 2001, Novel methods for displaying (poly)peptides/proteins on bacteriophage particles via disulfide bonds. WO 01/05950.Google Scholar
  89. Lorenz, H.M., 2002, Technology evaluation: adalimumab, Abbott laboratories. Curr. Opin. Mol. Ther. 4: 185–190.PubMedGoogle Scholar
  90. Low, N.M., Holliger, P. and Winter, G., 1996, Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260: 359–368.PubMedCrossRefGoogle Scholar
  91. Lu, D., Jimenez, X., Zhang, H., Bohlen, P., Witte, L., and Zhu, Z., 2002, Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J Immunol Methods, 267: 213–226.PubMedCrossRefGoogle Scholar
  92. Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H. and Walter, G., 1999, Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270: 103–111.PubMedCrossRefGoogle Scholar
  93. MacBeath, G. and Schreiber, S.L., 2000, Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763.PubMedGoogle Scholar
  94. Marget, M., Sharma, B.B., Tesar, M., Kretzschmar, T., Jenisch, S., Westphal, E., Davarnia, P., Weiss, E., Ulbrecht, M., Kabelitz, D. and Krönke, M., 2000, Bypassing hybridoma technology: HLA-C reactive human single-chain antibody fragments (scFv) derived from a synthetic phage display library (HuCAL) and their potential to discriminate HLA class I specificities. Tissue Antigens 56: 1–9.PubMedCrossRefGoogle Scholar
  95. Marlin, S.D. and Springer, T.A., 1987, Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819.PubMedCrossRefGoogle Scholar
  96. Martineau, P., Jones, P. and Winter, G., 1998, Expression of an antibody fragment at high levels in the bacterial cytoplasm. J. Mol. Biol. 280: 117–127.PubMedCrossRefGoogle Scholar
  97. Matthews, B.W., 1995, Studies on protein stability with T4 lysozyme. Adv. Protein Chem., 46: 249–278.PubMedCrossRefGoogle Scholar
  98. Milstein, C. and Cuello, A.C., 1983, Hybrid hybridomas and their use in immunohistochemistry. Nature 305: 537–540.PubMedCrossRefGoogle Scholar
  99. Mimura, Y., Ghirlando, R., Sondermann, P., Lund, J. and Jefferis, R., 2001, The molecular specificity of IgG-Fc interactions with Fc gamma receptors. Adv. Exp. Med. Biol. 495: 49–53.PubMedCrossRefGoogle Scholar
  100. Morton, H.C., Atkin, J.D., Owens, R.J. and Woof, J.M., 1993, Purification and characterization of chimeric human IgAl and IgA2 expressed in COS and Chinese hamster ovary cells. J. Immunol. 151: 4743–4752.PubMedGoogle Scholar
  101. Mourad, G.J., Preffer, F.I., Wee, S.L., Powelson, J.A., Kawai, T., Delmonico, F.L., Knowles, R.W., Cosimi, A.B. and Colvin, R.B., 1998, Humanized IgGl and IgG4 anti-CD4 monoclonal antibodies: effects on lymphocytes in the blood, lymph nodes, and renal allografts in cynomolgus monkeys. Transplantation, 65: 632–641.PubMedCrossRefGoogle Scholar
  102. Nagy, ?. A., Hubner, B., Löhning, C., Rauchenberger, R., Reiffert, S., Thomassen-Wolf, E., Zahn, S., Leyer, S., Schier, E. M., Zahradnik, A., Brunner, C., Stanglmaier, M., Anderson, S., Dunn, M., Hallek, M., Kretzschmar, T. and Tesar, M., 2002, Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat. Med. 8: 801–807.PubMedGoogle Scholar
  103. Naski, M.C. and Ornitz, D.M., 1998, FGF signaling in skeletal development. Front. Biosci. 3: D781–794.PubMedGoogle Scholar
  104. Newell, M.K., VanderWall, J., Beard, K.S. and Freed, J.H., 1993, Ligation of major histocompatiblity complex class II molecules mediates apoptotic cell death in resting B lymphocytes. Proc. Natl. Acad. Sci. USA 90: 10459–10463.PubMedCrossRefGoogle Scholar
  105. O’Shea, E.K., Rutkowski, R., Stafford, W.F.III and Kim, P.S., 1989, Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245: 646–648.PubMedCrossRefGoogle Scholar
  106. Pack, P. and Pliickthun, A., 1992, Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31: 1579–1584.PubMedCrossRefGoogle Scholar
  107. Pack, P., Kujau, M., Schroeckh, V., Knupfer, U., Wenderoth, R., Riesenberg, D. and Pliickthun, A., 1993, Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Biotechnology (N. Y.) 11: 1271–1277.Google Scholar
  108. Pack, P., Muller, K., Zahn, R. and Pliickthun, A., 1995, Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J. Mol. Biol. 246: 28–34.PubMedCrossRefGoogle Scholar
  109. Palomares, L.A., Joosten, C.E., Hughes, P.R., Granados, R.R. and Shuler, M.L., 2003, Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19: 185–192.PubMedCrossRefGoogle Scholar
  110. Peluso, P., Wilson, D.S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., Heidecker, B., Poindexter, K., Tolani, N., Phelan, M., Witte, K., Jung, L.S., Wagner, P. and Nock, S., 2003, Optimising antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312: 113–124.PubMedCrossRefGoogle Scholar
  111. Perelson, A. S., 1989, Immune network theory. Immunol. Rev. 110: 5–36.PubMedCrossRefGoogle Scholar
  112. Persic, L., Horn, I. R., Rybak, S., Cattaneo, A., Hoogenboom, H. R. and Bradbury, A., 1999, Single-chain variable fragments selected on the 57-76 p21 Ras neutralising epitope from phage antibody libraries recognise the parental protein. FEBS Lett. 443:112–116.PubMedCrossRefGoogle Scholar
  113. Pliickthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. and Riesenberg, D., 1996, Producing antibodies in Escherichia coli: from PCR to fermentation. In: B.D. Hames (ed.), Antibody Engineering, pp. 203–249. Oxford, United Kingdom: Oxford University Press.Google Scholar
  114. Pliickthun, A. and Pack, P., 1997, New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3: 83–105.CrossRefGoogle Scholar
  115. Pober, J.S., Gimbrone, M.A. Jr, Lapierre, L.A., Mendrick, D.L., Fiers, W., Rothlein, R., and Springer T.A., 1986, Overlapping patterns of activation of human endothelial cells by interleukin 1, tumour necrosis factor, and immune interferon. J. Immunol. 137: 1893–1896.PubMedGoogle Scholar
  116. Queen, C., Schneider, W. P., Selick, H. E., Payne, P. W., Landolfi, N. F., Duncan, J. F., Avdalovic, N. M., Levitt, M., Junghans, R. P. and Waldmann, T. A., 1989, A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 86: 10029–10033.PubMedCrossRefGoogle Scholar
  117. Rader, C. and Barbas, C.F.III., 1997, Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8: 503–508.PubMedCrossRefGoogle Scholar
  118. Ramjiawan, B., Maiti, P., Aftanas, A., Kaplan, H., Fast, D., Mantsch, H.H. and Jackson, M., 2000, Noninvasive localization of tumours by immunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancer specificity. Cancer 89:1134–1144.PubMedCrossRefGoogle Scholar
  119. Rauchenberger, R., Borges, E., Thomassen-Wolf, E., Rom, E., Adar, R., Vaniv, Y., Malka, A., Cumakov, I., Kotzer, S., Resnitzky, D., Knappik, A., Reiffert, S., Prassler, J., Jury, K., Waldherr, D., Bauer, S., Kretzschmar, T., Yayon, A. and Rothe, C., Human combinatorial Fab library, HuCAL®-Fab 1, yielding the first specific and functional antibodies against the human receptor tyrosine kinase FGFR3. J. Biol. Chem. 2003, In pressGoogle Scholar
  120. Reichert, J.M., 2001, Monoclonal antibodies in the clinic. Nat. Biotechnol. 19: 819–822.PubMedCrossRefGoogle Scholar
  121. Reichert, J.M., 2002, Therapeutic monoclonal antibodies: trends in development and approval in the US. Curr. Opin. Mol. Ther. 4: 110–118.PubMedGoogle Scholar
  122. Rheinnecker, M., Hardt, C., Ilag, L.L., Kufer, P., Gruber, R., Hoess, A., Lupas, A., Rottenberger, C., Plückthun, A. and Pack, P., 1996, Multivalent antibody fragments with high functional affinity for a tumour-associated carbohydrate antigen. J. Immunol. 157: 2989–2997.PubMedGoogle Scholar
  123. Rippmann, J.F., Klein, M., Hoischen, C., Brocks, B., Rettig, W.J., Gumpert, J., Pfizenmaier, K., Mattes, R. and Moosmayer, D., 1998, Procaryotic expression of single-chain variable-fragment (scFv) antibodies: secretion in L-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli. Appl. Environ. Microbiol. 64: 4862–4869.PubMedGoogle Scholar
  124. Rothlein, R., Dustin, M.L., Marlin, S.D. and Springer, T.A., 1986, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137: 1270–1274.PubMedGoogle Scholar
  125. Ryabova, L.A., Desplancq, D., Spirin, A.S. and Plückthun, A., 1997, Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat. Biotechnol. 15: 79–84.PubMedCrossRefGoogle Scholar
  126. Sblattero, D. and Bradbury, A., 2000, Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotech. 18: 75–80.CrossRefGoogle Scholar
  127. Schäffner, J., Winter, J., Rudolph, R. and Schwarz, E., 2001, Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl. Environ. Microbiol. 67: 3994–4000.PubMedCrossRefGoogle Scholar
  128. Schellekens, H., 2002, Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther. 24: 1720–1740.PubMedCrossRefGoogle Scholar
  129. Schier, R., Bye, J., Apell, G., Mc Call, A., Adams, G.P., Malmqvist, M., Weiner, L.M. and Marks, J.D., 1996a, Isolation of high-affinity monomelic human anti-c-erbB2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255: 28–43.CrossRefGoogle Scholar
  130. Schier, R., McCall, A., Adams, G.P., Marshall, K.W., Merritt, H., Yim, M., Crawford, R.S., Weiner, L.M., Marks, C. and Marks, J.D., 1996b, Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263: 551–567.CrossRefGoogle Scholar
  131. Schmiedl, A., Breitling, F., Winter, C.H., Queitsch, I., and Dübel, S., 2000, Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J. Immunol. Methods 242: 101–114.PubMedCrossRefGoogle Scholar
  132. Schwenk, J.M., Stoll, D., Templin, M.F., and Joos, T.O., 2002, Cell microarrays: an emerging technology for the characterization of antibodies. Biotechniques, Suppl, 54–61.Google Scholar
  133. Sheets, M. D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., Hemingsen, G., Wong, C., Gerhardt, J. C. and Marks, J. D., 1998, Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95: 6157–6162.PubMedCrossRefGoogle Scholar
  134. Siegel, R.W., Allen, B., Pavlik, P., Marks, J. D. and Bradbury, A., 2000, Mass spectral analysis of a protein complex using single-chain antibodies selected on a peptide target: applications to functional genomics. J. Mol. Biol. 302:285–293.PubMedCrossRefGoogle Scholar
  135. Simmons, L.C. and Yansura, D.G., 1996, Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629–634.PubMedCrossRefGoogle Scholar
  136. Simmons, L.C, Reilly, D., Klimowski, L., Raju, T.S., Meng, G., Sims, P., Hong, K., Shields, R.L., Damico, L.A., Rancatore, P. and Yansura, D.G., 2002, Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263: 133–147.PubMedCrossRefGoogle Scholar
  137. Skerra, A. and Plückthun, A., 1988, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.PubMedCrossRefGoogle Scholar
  138. Smith, C.W., Marlin, S.D., Rothlein, R., Toman, C. and Anderson, D.C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83: 2008–2017.PubMedCrossRefGoogle Scholar
  139. Söderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A.-M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., Danielson, L., Carlsson, R. and Borrebaeck, C.A.K., 2000, Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotech. 18: 852–856.CrossRefGoogle Scholar
  140. Spirin, A.S., Baranov, V.l., Ryabova, L.A., Ovodov, S.Y. and Alakhov, Y.B., 1988, A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242: 1162–1164.PubMedCrossRefGoogle Scholar
  141. Sun, C., Kilburn, D., Lukashin, A., Crowell, T., Gardner, H., Brundiers, R., Diefenbach, B. and Carulli, J.P., 2003, Kirrel2, a novel immunoglobulin superfamily gene expressed primarily in beta cells of the pancreatic islets. Genomics 82: 130–142.PubMedCrossRefGoogle Scholar
  142. Sun, J., Pons, J., and Craik, C.S., 2003, Potent and selective inhibition of membrane-type serine protease 1 by human single-chain antibodies. Biochemistry 42: 892–900.PubMedCrossRefGoogle Scholar
  143. Sykes, K.F. and Johnston, S.A., 1999, Linear expression elements: a rapid, in vivo, method to screen for gene functions. Nat. Biotechnol. 17: 355–359.PubMedCrossRefGoogle Scholar
  144. Takeuchi, T., Harris, J.L., Huang, W., Yan, K.W., Coughlin, S.R. and Craik, C.S., 2000, Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275: 26333–26342.PubMedCrossRefGoogle Scholar
  145. Templin, M.F., Stoll, D., Schrenk, M., Traub, P.C., Vohringer, C.F. and Joos, T.O., 2002, Protein microarray technology. Trends Biotechnol. 20: 160–166.PubMedCrossRefGoogle Scholar
  146. Tey, B.T., Singh, R.P., Piredda, L., Piacentini, M. and Al Rubeai, M., 2000, Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J. Biotechnol. 79, 147–159.PubMedCrossRefGoogle Scholar
  147. Truman, J.-P., Ericson, M.L., Choqueux-Seebold, J.M., Charron, D.J. and Mooney, N.A., 1994, Lymphocyte programmed cell death is mediated via HLA class II DR. Intl. Immunol. 6: 887–896.CrossRefGoogle Scholar
  148. Vaickus, L., Jones, V.E., Morton, C.L., Whitford, K. and Bacon, R.N., 1989, Antiproliferative mechanism of anti-class II monoclonal antibodies. Cell Immunol. 119: 445–458.PubMedCrossRefGoogle Scholar
  149. Van Seventer, G.A., Shimizu, Y., Horgan, K.J. and Shaw, S., 1990, The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J. Immunol. 144: 4579–4586.PubMedGoogle Scholar
  150. Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C, McCafferty, J., Hodits, R. A., Wilton, J. and Johnson K. S., 1996, Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotech. 14: 309–314.CrossRefGoogle Scholar
  151. Venter, J. C. and Adams, M. D., 1993. WO 93/00353.Google Scholar
  152. Venturi, M., Seifert, C. and Hunte, C., 2002, High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J. Mol. Biol. 315: 1–8.PubMedCrossRefGoogle Scholar
  153. Vidovic, D., Falcioni, F., Siklodi, B., Belunis, C.J., Bolin, D.R., Ito, K. and Nagy Z.A., 1995, Down-regulation of class II major histocompatibility complex molecules on antigen presenting ceils by antibody fragments. Eur. J. Immunol. 25: 3349–3355.PubMedCrossRefGoogle Scholar
  154. Vidovic, D. and Toral, J., 1998, Selective apoptosis of neoplastic cells by the HLA-DR-specific monoclonal antibody. Cancer Lett. 128: 127–135.PubMedCrossRefGoogle Scholar
  155. Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. and Moroney, S.E., 1994, Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucl. Acids Res. 22: 5600–5607.PubMedCrossRefGoogle Scholar
  156. Voutsadakis, I.A., 2002, Gemtuzumab Ozogamicin (CMA-676, Mylotarg) for the treatment of CD33+ acute myeloid leukemia. Anticancer Drugs 13: 685–692.PubMedCrossRefGoogle Scholar
  157. Waldmann, T.A., Levy, R. and Coller, B.S., 2000, Emerging therapies: spectrum of applications of monoclonal antibody therapy. Hematology (Am. Soc. Hematol. Educ. Program), 394–408.Google Scholar
  158. Wall, J.G. and Plückthun, A., 1999, The hierarchy of mutations influencing the folding of antibody domains in Escherichia coli. Protein Eng. 12: 605–611.Google Scholar
  159. Walter, G., Bussow, K., Lueking, A. and Glokler, J., 2002, High-throughput protein arrays: prospects for molecular diagnostics. Trends Mol. Med. 8: 250–253.PubMedCrossRefGoogle Scholar
  160. Watters, J.M., Telleman, P. and Junghans, R.P., 1997, An optimised method for cell-based phage display panning. Immunotechnology 3: 21–29.PubMedCrossRefGoogle Scholar
  161. Webster, M.K. and Donoghue, D.J., 1997, Enhanced signaling and morphological transformation by a membrane-localized derivative of the fibroblast growth factor receptor 3 kinase domain. Trends Genet. 13: 178–182.PubMedCrossRefGoogle Scholar
  162. Weir, A.N. and Bailey, N.A., 1997, Process for obtaining antibodies utilizing heat treatment. US 5,665,866.Google Scholar
  163. Weir, A.N., Nesbitt, A., Chapman, A.P., Popplewell, A.G., Antoniw, P. and Lawson, A.D., 2002, Formatting antibody fragments to mediate specific therapeutic functions. Biochem. Soc. Trans. 30:512–516.PubMedCrossRefGoogle Scholar
  164. Willuda, J., Honegger, A., Waibel, R., Schubiger, P.A., Stahel, R., Zangemeister-Wittke, U. and Plückthun, A., 1999, High thermal stability is essential for tumour targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res. 59: 5758–5767.PubMedGoogle Scholar
  165. Willuda, J., Kubetzko, S., Waibel, R., Schubiger, P.A., Zangemeister-Wittke, U. and Plückthun, A., 2001, Tumour targeting of mono-, di-, and tetravalent anti-p l85(HER-2) miniantibodies multimerised by self-associating peptides. J. Biol. Chem. 276: 14385–14392.PubMedGoogle Scholar
  166. Wörn, A. and Plückthun, A., 1999, Different equilibrium stability behaviour of scFv fragments: identification, classification, and improvement by protein engineering. Biochemistry 38: 8739–8750.PubMedCrossRefGoogle Scholar
  167. Wörn, A. and Plückthun, A., 2001, Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305: 989–1010.PubMedCrossRefGoogle Scholar
  168. Yang, W., Green, K., Pinz-Sweeney, S., Briones, A.T., Burton, D.R. and Barbas III, C.F., 1995, CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254: 392–403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.MorphoSys AGMartinsried/PlaneggGermany

Personalised recommendations