Skip to main content

The Evolution of High Visual Acuity in the Anthropoidea

  • Chapter

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Most definitions of the order primates make some reference to the importance of vision relative to the other special senses (Le Gros Clark, 1959; Martin, 1990; Napier and Napier, 1967). This characterization is particularly fitting for haplorhine primates, in which vision is unquestionably the dominant sensory modality. Anthropoids and tarsiers differ from strepsirrhines in exhibiting a derived reduction of the olfactory apparatus (Baron et al., 1983; Cave, 1973) and an elaboration of the visual sense to a degree that is unique among mammals (Rodieck, 1973; Walls, 1942). Visual adaptations, however, are divergent within the haplorhine suborder. While the tarsier visual system is primarily specialized for enhanced sensitivity in the context of nocturnal visual predation (Castenholz, 1984s), most living anthropoids are adapted for extremely acute diurnal vision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. L., and Horton, J. C., 2002, Shadows cast by retinal blood vessels mapped in primary visual cortex, Science 298: 572–576.

    Article  PubMed  CAS  Google Scholar 

  • Ahnelt, P. K., Hokoç, J. N., and Röhlich, P., 1995, Photoreceptors in a primitive mammal, the South American opossum, Didelphis marsupialis aurita: Characterization with anti-opsin immunolabeling, Vis. Neurosci. 12: 793–804.

    CAS  Google Scholar 

  • Alfieri, R, Pariente, G., and Sole, P., 1976, Dynamic electroretinography in monochromatic lights and fluorescence retinography in lemurs, Doc. Ophthal. Proc. Ser. 10: 169–178.

    Article  Google Scholar 

  • Allman, J., 1977, Evolution of the visual system in early primates, Prog. Psychobiol. Physiol Psychol. 7: 1–53.

    Google Scholar 

  • Andrade da Costa, B. L. S., and Hokoç, J. N., 2000, Photoreceptor topography of the retina in the New World monkey Cebus apella, Vision Res. 40: 2395–2409.

    Article  Google Scholar 

  • Arey, L. B., Bruesch, S. R., and Castanares, S., 1942, The relation between eyeball size and the number of optic nerve fibers in the dog, J. Comp. Neurol. 76: 417–422.

    Article  Google Scholar 

  • Arrese, C., Dunlop, S. A., Harman, A. M., Braekevelt, C. R., Ross, W. M., Shand, J., and Beazley, L. D., 1999, Retinal structure and visual acuity in a polyprotodont marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), Brain Behav. Evol. 53: 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Arrese, C., Archer, M., Runham, P., Dunlop, S. A., and Beazley, L. D., 2000, Visual system in a diurnal marsupial, the numbat (Myrmecobius fasciatus): Retinal organization, visual acuity, and visual fields, Brain Behav. Evol. 55: 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Arrese, C., Archer, M., and Beazley, L. D., 2002, Visual capabilities in a crepuscular marsupial, the honey possum (Tarsipes rostratus): A visual approach to ecology, J. Zool. Lond. 256: 151–158.

    Article  Google Scholar 

  • Balliet, R. F., and Schusterman, R. J., 1971, Underwater and aerial visual acuity in the Asian “clawless” otter (Amblonyx cineria cineria), Nature 234: 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Barbour, H. R., Archer, M. A., Hart, N. S., Thomas, N., Dunlop, S. A., Beazley, L. D., and Shand, J., 2002, Retinal characteristics of the ornate dragon lizard, Ctenophorus ornatus, J. Comp. Neurol. 450: 334–344.

    Article  Google Scholar 

  • Baron, G., Frahm, H. D., Bhatnagar, K. P., and Stephan, H., 1983, Comparison of brain structure volumes in insectivora and primates. III. Main olfactory bulb (MOB), J. Hirnforsch. 24: 551–558.

    PubMed  CAS  Google Scholar 

  • Beard, K. C., Krishtalka, L., and Stuckey, R. K., 1991, First skulls of the Early Eocene primate Shoshonius cooperi and the anthropoid-tarsier dichotomy, Nature 349: 64–67.

    Article  PubMed  CAS  Google Scholar 

  • Beard, K. C., and MacPhee, R. D. E., 1994, Cranial Anatomy of Shoshonius and the Antiquity of Anthropoidea, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp. 55–97.

    Google Scholar 

  • Bennis, M., El Hassni, M., Rio, J.-P., Lecren, D., Repérant, J., and Ward, R., 2001, A quantitative ultrastructural study of the optic nerve of the chameleon, Brain Behav. Evol. 58: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Berkley, M. A., 1976, Some Comments on Visual Acuity and its Relation to Eye Structure, in: Evolution of Brain and Behavior in Vertebrates, R. B. Masterton, C. B. G. Campbell, M. E. Bitterman, and N. Hotton, eds., John Wiley and Sons, New York, pp. 73–88.

    Google Scholar 

  • Birch, D., and Jacobs, G. H., 1979, Spatial contrast sensitivity in albino and pigmented rats, Vision Res. 19: 933–937.

    Article  PubMed  CAS  Google Scholar 

  • Bisti, S., and Maffei, L., 1974, Behavioural contrast sensitivity of the cat in various visual meridians, J. Physiol Lond. 241: 201–210.

    PubMed  CAS  Google Scholar 

  • Blake, R., Cool, S. J., and Crawford, M. L. J., 1974, Visual resolution in the cat, Vision Res. 14: 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  • Boire, D., Dufour, J.-S., Théoret, H., and Ptito, M., 2001, Quantitative analysis of the retinal ganglion cell layer in the ostrich, Struthio camelus, Brain Behav. Evol. 58: 343–355.

    Article  CAS  Google Scholar 

  • Bone, R. A., Landrum, J. T., and Tarsis, S. L., 1985, Preliminary identification of the human macular pigment, Vision Res. 25: 1531–1535.

    Article  PubMed  CAS  Google Scholar 

  • Bova, L. M., Wood, A. M., Jamie, J. F., and Truscott, R. J. W., 1999, UV filter compounds in human lenses: The origin of 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-ß-D-glucoside, Invest. Ophthalmol. Vis. Sci. 40: 3237–3244.

    PubMed  CAS  Google Scholar 

  • Bowmaker, J. K., 1991, The Evolution of Vertebrate Visual Pigments and Photoreceptors, in: Evolution of the Eye and Visual System, J. R. Cronly-Dillon, and R. L. Gregory, eds., CRC Press, Boca Raton, pp. 63–81.

    Google Scholar 

  • Bowmaker, J. K., Hunt, S. A. D. M., Mollon, J. D., 1991, Photosensitive and photostable pigments in the retinae of old world monkeys, J. Exp. Biol. 156: 1–19.

    PubMed  CAS  Google Scholar 

  • Braekevelt, C. R., Beazley, L. D., Dunlop, S. A., and Darby, J. E., 1986, Numbers of axons in the optic nerve and retinal ganglion cells during development in the marsupial Setonyx brachyurus, Dev. Brain Res. 25: 117–125.

    Article  Google Scholar 

  • Brooke, R N. L., Downer, J. C., and Powell, T. P. S., 1965, Centrifugal fibres to the retina in the monkey and cat, Nature 207: 1365–1367.

    Article  PubMed  CAS  Google Scholar 

  • Bugge, J., 1974, The cephalic arterial system in insectivores, primates, rodents and lagomorphs, with special reference to systematic classification, Acta Anat. 87(Supp. 62): 1–159.

    Article  Google Scholar 

  • Buttery, R. G., Haight, J. R., and Bell, K., 1990, Vascular and avascular retinae in mammals, Brain Behav. Evol. 35: 156–175.

    Article  PubMed  CAS  Google Scholar 

  • Calderone, J. B., and Jacobs, G. H., 1999, Cone receptor variations and their functional consequences in two species of hamster, Vis. Neurosci. 16: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Cartmill, M., 1970, The Orbits of Arboreal Mammals: A Reassessment of the Arboreal Theory of Primate Evolution, Doctoral dissertation, University of Chicago.

    Google Scholar 

  • Cartmill, M., 1980, Morphology, Function and Evolution of the Anthropoid Postorbital Septum, in: Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon, and A. B. Chiarelli, eds., Plenum Press, New York, pp. 243–274.

    Chapter  Google Scholar 

  • Cartmill, M., 1994, Anatomy, Antinomies, and the Problem of Anthropoid Origins, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp. 549–565.

    Google Scholar 

  • Cartmill, M., and Kay, R. F., 1978, Cranio-dental Morphology, Tarsier Affinities, and Primate Sub-orders, in: Recent Advances in Primatology, D. J. Chivers, and K. A. Joysey, eds., Academic Press, New York, pp. 205–213.

    Google Scholar 

  • Castenholz, A., 1984, The Eye of Tarsius, in: Biology of Tarsiers, C. Niemitz, ed., Gustav Fischer Verlag, Stuttgart, pp. 303–318.

    Google Scholar 

  • Cave, A. J. E., 1973, The primate nasal fossa, Biol. J. Linn. Soc. 5: 377–387.

    Google Scholar 

  • Cavonius, C. R., and Robbins, D. O., 1973, Relationship between luminance and visual acuity in the rhesus monkey, J. Physiol. (Lond.) 232: 239–246.

    CAS  Google Scholar 

  • Cooper, G. F., and Robson, J. G., 1969a, The yellow colour of the lens of the grey squirrel (Sciurus carolinensis leucotis), J. Physiol. 203: 403–410.

    PubMed  CAS  Google Scholar 

  • Cooper, G. F., and Robson, J. G., 1969b, The yellow colour of the lens of man and other primates, J. Physiol. 203: 411–417.

    PubMed  CAS  Google Scholar 

  • Cowan, W. M., and Powell, T. P. S., 1963, Centrifugal fibers in the avian visual system, Proc. Roy. Soc. Lond. B 158: 232–252.

    Article  CAS  Google Scholar 

  • Cowey, A., and Ellis, C. M., 1967, Visual acuity of rhesus and squirrel monkeys, J. Comp. Physiol. Psychol. 64: 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E., 1990, Human photoreceptor topography, J.Comp. Neurol. 292: 497–523.

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H. J. A., Arden, G. B., Ikeda, H., Luck, C. P., Rosenberg, M. E., Pedler, C. M. H., and Tansley, K., 1965, Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: An interpretative study, Vision Res. 5: 399–424.

    Article  PubMed  CAS  Google Scholar 

  • De Valois, R. L., Morgan, H., and Snodderly, D. M., 1974, Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers, Vision Res. 14: 75–81.

    Article  PubMed  Google Scholar 

  • De Bruyn, E. J., Wise, V. L., and Casagrande, V. A., 1980, The size and topographic arrangement of retinal ganglion cells in the galago, Vision Res. 20: 315–327.

    Article  Google Scholar 

  • Detwiler, S. R., 1943, Vertebrate Photoreceptors, The MacMillan Company, New York.

    Book  Google Scholar 

  • Disotell, T. R., 1996, The phylogeny of Old World monkeys, Evol. Anthropol. 5: 18–24.

    Article  Google Scholar 

  • Disotell, T. R., 2000, Molecular Systematics of the Cercopithecidae, in: Old World Monkeys, P. F. Whitehead, and C. J. Jolly, eds., Cambridge University Press, Cambridge, pp. 29–56.

    Chapter  Google Scholar 

  • Dkhissi-Benyahya, O., Szél, A., Degrip, W. J., and Cooper, H. M., 2001, Short and mid-wavelength cone distribution in a nocturnal strepsirrhine primate (Microcebus murinus), J. Comp. Neurol. 438: 490–504.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. H., and Marshall, N. J., 1999, A Review of Vertebrate and Invertebrate Ocular Filters, in: Adaptive Mechanisms in the Ecology of Vision, S. N. Archer, M. B. A. Djamagoz, E. R. Loew, J. C. Partridge, and S. Vallerga, eds., Kluwer Academic Publishers, UK, pp. 95–162.

    Chapter  Google Scholar 

  • Dral, A. D. G., 1983, The retinal ganglion cells of Delphinus delphis and their distribution, Aquat. Mam. 10: 57–68.

    Google Scholar 

  • Drenhaus, U., von Gunten, A., and Rager, G., 1997, Classes of axons and their distribution in the optic nerve of the tree shrew (Tupaia belangen), Anat. Rec. 249: 103–116.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, S. A., Ross, W. M., and Beazley, L. D., 1994, The retinal ganglion cell layer and optic nerve in a marsupial, the honey possum (Tarsipes rostratus), Brain Behav. Evol. 44: 307–323.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, D., Mark, R., and Reymond, L., 1983, Factors underlying falcon grating acuity, Nature 303: 729–730.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, V. F., 1980, Grating acuity of the golden hamster, Exp. Brain Res. 38: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Endler, J. A., 1993, The color of light in forests and its implications, Ecol. Monogr. 63: 1–27.

    Article  Google Scholar 

  • Ferraz de Oliveira, L., and Ripps, H., 1968, The “area centralis” of the owl monkey, Vision Res. 8: 223–228.

    Article  Google Scholar 

  • Fischer, Q. S., and Kirby, M. A., 1991, Number and distribution of retinal ganglion cells in anubis baboons (Papio anubis), Brain Behav. Evol. 37: 189–203.

    Article  PubMed  CAS  Google Scholar 

  • Fite, K. V., and Rosenfield-Wessels, S., 1975, A comparative study of deep avian foveas, Brain Behav. Evol. 12: 97–115.

    Article  PubMed  CAS  Google Scholar 

  • Franco, E. C. S., Finlay, B. L., Silveira, L. C. L., Yamada, E. S., and Crowley, J. C., 2000, Conservation of absolute foveal area in New World monkeys, Brain Behav. Evol. 56: 276–286.

    Article  PubMed  CAS  Google Scholar 

  • Franzen, J. L., 1994, The Messel Primates and Anthropoid Origins, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp. 99–122.

    Google Scholar 

  • Freeman, B., and Tancred, E., 1978, The number and distribution of ganglion cells in the retina of the brush-tailed possum, Trichosurus vulpecula, J. Comp. Neurol. 177: 557–568.

    Article  CAS  Google Scholar 

  • Freeman, B., and Watson, C. R. R., 1978, The optic nerve of the brush-tailed possum, Trichosurus vulpecula: Fibre diameter spectrum and conduction latency groups, J. Comp. Neurol. 179: 739–752.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, Y, Sugimoto, T., and Shirokawa, T., 1982, Strain differences in quantitative analysis of the rat optic nerve, Exp. Neurol. 75: 525–532.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, K. K., Goodchild, A. K., Sefton, A. E., and Martin, P. R., 1996, Morphology of retinal ganglion cells in a New World monkey, the marmoset Callithrix jacchus, J. Comp. Neurol. 366: 76–92.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. D., 1980, Eocene Adapidae, Paleobiogeography, and the Origin of South American Platyrrhini, in: Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon, and A. B. Chiarelli, eds., Plenum Press, New York, pp. 123–138.

    Chapter  Google Scholar 

  • Goodchild, A. K, Ghosh, K K, and Martin, P. R., 1996, Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus, J. Comp. Neurol. 366: 55–75.

    Article  PubMed  CAS  Google Scholar 

  • Gorgels, T. G. M. F., and van Norren, D., 1992, Spectral transmittance of the rat lens, Vision Res. 32: 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  • Govardovskii, V. L, Röhlich, P., Szél, A., and Khokhlova, T. V., 1992, Cones in the retina of the Mongolian gerbil, Meriones unguiculatur. An immunocytochemical and electrophysiological study, Vision Res. 32: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Harman, A. M., Nelson, J. E., Crewther, S. G., and Crewther, D. P., 1986, Visual acuity of the northern native cat (Dasyurus hallucatus)—behavioural and anatomical estimates, Behav. Brain Res. 22: 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Harman, A., Dann, J., Ahmat, A., Macuda, T., Johnston, K., Timney, B., 2001, The retinal ganglion cell layer and visual acuity of the camel, Brain Behav. Evol. 58: 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Heesy, C. P., and Ross, C. F., 2001, Evolution of activity patterns and chromatic vision in primates: Morphometrics, genetics and cladistics, J. Hum. Evol. 40: 111–149.

    Article  PubMed  CAS  Google Scholar 

  • Hemmi, J. M., and Grünert, U., 1999, Distribution of photoreceptor subtypes in the retina of a marsupial, the tammar wallaby (Macropus eugenii), Vis. Neurosci. 16: 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A., and Kupfer, C., 1976, The histogenesis of the fovea in the macaque monkey, Invest. Ophthalmol. 15: 746–756.

    CAS  Google Scholar 

  • Hendrickson, A., Djajadi, H. R, Nakamura, L., Possin, D. E., and Sajuthi, D., 2000, Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography, J. Comp. Neurol. 424: 718–730.

    Article  PubMed  CAS  Google Scholar 

  • Herbin, M., Rio, J.-P., Repérant, J., Cooper, H. M., Nevo, E., and Lemire, M., 1995, Ultrastructural study of the optic nerve in blind mole-rats (Spalacidae, Spalax) , Vis. Neurosci. 12: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Herbin, M., Boire, D., and Ptito, M., 1997, Size and distribution of retinal ganglion cells in the St. Kitts green monkey (Cercopithecus aethiops sabeus), J. Comp. Neurol. 383: 459–472.

    Article  PubMed  CAS  Google Scholar 

  • Herman, L. M., Peacock, M. F., Yunker, M. P., and Madsen, C. J., 1975, Bottlenosed dolphin: Double-slit pupil yields equivalent aerial and underwater diurnal acuity, Science 189: 650–652.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, J., 1983, Factors underlying falcon grating acuity—reply, Nature 303: 730.

    Article  Google Scholar 

  • Hirsch, J., and Hylton, R, 1984, Quality of the primate photoreceptor lattice and limits of spatial vision, Vision Res. 24: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, J., and Curcio, C. A., 1989, The spatial resolution capacity of human foveal retina, Vision Res. 29: 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  • Hodos, W., Miller, R. F., and Fite, K. V., 1991, Age-dependent changes in visual acuity and retinal morphology in pigeons, Vision Res. 31: 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Hokoç, J. N., and Oswaldo-Cruz, E., 1978, Quantitative analysis of the opossum’s optic nerve: An electron microscopic study, J. Comp. Neurol. 178: 773–782.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1960, Receptive fields of optic nerve fibres in the spider monkey, J. Physiol. 154: 572–580.

    PubMed  CAS  Google Scholar 

  • Hughes, A., 1975, A qualitative analysis of the cat retinal ganglion cell topography, J. Comp. Neurol. 163: 107–128.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A., 1977, The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organization, in: Handbook of Sensory Physiology: The Visual System in Vertebrates, F. Criscitelli, ed., Springer-Verlag, New York, pp. 613–756.

    Chapter  Google Scholar 

  • Inzunza, O., Bravo, H., Smith, R. L., and Angel, M., 1991, Topography and morphology of retinal ganglion cells in Falconiformes: A study of predatory and carrioneating birds, Anat. Rec. 229: 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., 1977, Visual capacities of the owl monkey (Aotus trivirgatus)—II. Spatial contrast sensitivity, Vision Res. 17: 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., 1992, Ultraviolet vision in vertebrates, Amer. Zool. 32: 544–554.

    Google Scholar 

  • Jacobs, G. H., and Deegan, J. F. II, 1994, Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus):Characteristics and mechanisms, Vision Res. 34: 1433–1441.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., Blakeslee, B., McCourt, M. E., and Tootell, R. B. H., 1980, Visual sensitivity of ground squirrels to spatial and temporal luminance variations, J.Comp. Physiol. 136: 291–299.

    Article  Google Scholar 

  • Jacobs, G. H., Birch, D. G., and Blakeslee, B., 1982, Visual acuity and spatial contrast sensitivity in tree squirrels, Behav. Process. 7: 367–375.

    Article  Google Scholar 

  • Jacobson, S. G., Franklin, K. B. J., and McDonald, W. I., 1976, Visual acuity in the cat, Vision Res. 16: 1141–1143.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. L., 1901, Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination, Phil. Trans. Roy. Soc. B 194: 1–82.

    Article  Google Scholar 

  • Jonas, J. B., Schmidt, A. M., MüUer-Bergh, J. A., Schlötzer-Schrehardt, U. M., and Naumann, G. O. H., 1992, Human optic nerve fiber count and optic disc size, Invest. Ophthalmol. Vis. Sci. 33: 2012–2018.

    PubMed  CAS  Google Scholar 

  • Jones, A. E., 1965, The retinal structure of (Aotes trivirgatus) the owl monkey, J.Comp. Neurol. 125: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Juliusson, B., Bergström, A., Röhlich, P., Ehinger, B., van Veen, T., and Szél, A., 1994, Complimentary cone fields of the rabbit retina, Invest. Ophthalmol. Vis. Sci. 35: 811–818.

    PubMed  CAS  Google Scholar 

  • Kappelman, J., 1992, The age of the Fayum primates as determined by paleomagnetic reversal stratigraphy, J. Hum. Evol. 22: 495–503.

    Article  Google Scholar 

  • Kay, R. F., and Cartmill, M., 1977, Cranial morphology and adaptation of Palaechthon nacimienti and other paraomomyidae (Plesiadapoidea ? Primates), with a description of a new genus and species, J.Hum. Evol. 6: 19–35.

    Article  Google Scholar 

  • Kay, R. F., and Simons, E. L., 1983, Dental formulae and dental eruption patterns in Parapithecidae (Primates, Anthropoidea), Am.J. Phys. Anthropol. 62: 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R F., and Kirk, E. C., 2000, Osteological evidence for the evolution of activity pattern and visual acuity in primates, Am. J. Phys. Anthropol. 113: 235–262.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R. F., and Williams, B. A., 1994, Dental Evidence for Anthropoid Origins, in: Anthropoid Origins, J. G. Fleagle, and R. F. Kay, eds., Plenum Press, New York, pp.361–445.

    Google Scholar 

  • Kirby, M. A., Clift-Forsburg, L., Wilson, P. D., and Rapisardi, S. C., 1982, Quantitative analysis of the optic nerve of the North American opossum (Didelphis virginiana): An electron microscopic study, J Comp. Neurol. 211: 318–327.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., and Wang, H. W., 1985, The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the North American opossum (Didelphisvirginiana), Vision Res. 25: 1207–1221.

    Article  PubMed  CAS  Google Scholar 

  • Kolmer, W., 1930, Zur Kenntnis des Auges der Primaten, Z.Anat. Entwiklungsgesch. 93: 679–722.

    Article  Google Scholar 

  • Kryger, Z., Galli-Resta, L., Jacobs, G. H., and Reese, B. E., 1998, The topography of rod and cone photoreceptors in the retina of the ground squirrel, Visual Neurosci. 15: 685–691.

    Article  CAS  Google Scholar 

  • Lanèque, L., 1993, Variation of orbital features in adapine skulls, J.Hum. Evol. 25: 287–317.

    Article  Google Scholar 

  • Langston, A., Casagrande, V. A., and Fox, R, 1986, Spatial resolution of the galago, Vision Res. 26: 791–796.

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark, W. E., 1959, The Antecedents of Man, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Leventhal, A. G., and Schall, J. D., 1989, Extrinsic Determinants of Retinal Ganglion Cell Development in Cats and Monkeys, in: Development of the Vertebrate Retina, B. Finlay, and D. Sengelaub, eds., Plenum Press, New York, pp. 173–195.

    Chapter  Google Scholar 

  • Leventhal, A. G., Auk, S. J., Vitek, D. J., and Shou, T., 1989, Extrinsic determinants of retinal ganglion cell development in primates, J. Comp. Neurol. 286: 170–189.

    Article  PubMed  CAS  Google Scholar 

  • Lima, S. M. A., Silveira, L. C. L., and Perry, V. H., 1996, Distribution of M retinal ganglion cells in diurnal and nocturnal New World monkeys, J.Comp. Neurol. 368: 538–552.

    Article  PubMed  CAS  Google Scholar 

  • Linberg, K. A., Shaaw, C. L., Rex, T. S., Lewis, G. P., and Fisher, S. K., 1998, The distribution of S and L cones in cat retina before and after experimental detachment, Invest. Ophthalmol. Vis. Sci. 39: S1059.

    Google Scholar 

  • Long, K. O., and Fisher, S. K., 1983, The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi, J. Comp. Neurol. 221: 329–340.

    Article  CAS  Google Scholar 

  • Lukâts, Á, Dkhissi-Benyahya, O., Szepessy, Z., Röhlich, P., Vígh, B., Bennett, N. C. et al., 2002, Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse, Invest. Ophthalmol. Vis. Sci. 43: 2468–2473.

    PubMed  Google Scholar 

  • Lythgoe, J. N., 1979, The Ecology of Vision, Clarendon Press, Oxford, UK.

    Google Scholar 

  • MacKinnon, J., and MacKinnon, K., 1980, The behavior of wild spectral tarsiers, Int. J. Primatol. 1: 361–379.

    Article  Google Scholar 

  • MacPhee, R. D. E., and Cartmill, M., 1986, Basicranial Structures and Primate Systematics, in: Comparative Primate Biology, vol. 1, Systematics, Evolution and Anatomy, D. Swindler, and T. Erwin, eds., Alan R. Liss, New York, pp. 219–275.

    Google Scholar 

  • Makaretz, M., and Levine, R. L., 1980, A light microscopic study of the bifoveate retina in the lizard Anolis carolinensis: General observations and convergence ratios, Vision Res. 20: 679–686.

    Article  PubMed  CAS  Google Scholar 

  • Marks, J. M., 1980, Retinal Ganglion Cell Topography in Bats, Doctoral dissertation, Indiana University, Bloomington, IN.

    Google Scholar 

  • Martin, R. D., 1973, Comparative anatomy and primate systematics, Symp. Zool. Soc. Lond. 33: 301–337.

    Google Scholar 

  • Martin, R. D., 1990, Primate Origins and Evolution: A Phylogenetic Reconstruction, Chapman and Hall, London.

    Google Scholar 

  • Martin, P. R, and Grünert, U., 1999, Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys, J.Comp. Neurol. 406: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Mass, A.M., 1992, Retinal Topography in the Walrus (Odobenus rosmarus divergence) and fur seal (Callorhinus ursinus), in: Marine Mammal Sensory Systems, J. Thomas, R. A. Kastelein, and A. Y. Supin, eds., Plenum Press, New York, pp. 119–135.

    Chapter  Google Scholar 

  • Mass, A. M., and Supin, A. Y, 1986, Topographic distribution of sizes and density of ganglion cells in the retina of a porpoise, Phocoena phocoena, Aquat. Mam. 12: 95–102.

    Google Scholar 

  • Mass, A. M., and Supin, A. Y., 1989, Distribution of ganglion cells in the retina of an Amazon river dolphin Inia geoffrensis, Aquat. Mam. 15: 49–56.

    Google Scholar 

  • Mass, A. M., and Supin, A. Y., 1992, Peak density, size and distribution of ganglion cells in the retina of the fur seal, Callorhinus ursinus, Brain Behav. Evol. 39: 69–76.

    Article  CAS  Google Scholar 

  • Mass, A. M., and Supin, A. Y., 1995, Ganglion cell topography of the retina in the bottlenosed dolphin, Tursiops truncatus, Brain Behav. Evol. 45: 257–265.

    Article  CAS  Google Scholar 

  • Mass, A. M., and Supin, A. Y., 1997, Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the grey whale Eschrichtius gibbosus, Aquat. Mam. 23:17–28.

    Google Scholar 

  • Mass, A. M., and Supin, A. Y., 1999, Retinal topography and visual acuity in the riverine tucuxi (Sotalia fluviatilis), Marine Mamm. Sci. 15: 351–365.

    Article  Google Scholar 

  • Mass, A. M., and Supin, A. Y., 2000, Ganglion cell density and retinal resolution in the sea otter, Enhydra lutris, Brain Behav. Evol. 55: 111–119.

    Article  CAS  Google Scholar 

  • Mcllwain, J. T., 1996, An Introduction to the Biology of Vision, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Moran, G., Timney, B., Sorensen, L., and Desrochers, B., 1983, Binocular depth perception in the meerkat (Suricata suricatta), Vision Res. 23: 965–969.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. C., Cork, L. C., Dunkelberger, G. R., Brown, A., and Quigley, H. A., 1990, Aging changes of the rhesus monkey optic nerve, Invest. Ophthalmol. Vis. Sci. 31: 1623–1627.

    PubMed  CAS  Google Scholar 

  • Müller, B., and Peichl, L., 1989, Topography of rods and cones in the tree shrew retina, J Comp. Neurol. 282: 581–594.

    Article  PubMed  Google Scholar 

  • Murayama, T., Fujise, Y., Aoki, I., and Ishii, T., 1992, Histological Characteristics and Distribution of Ganglion Cells in the Retinae of the Dall’s Porpoise and Minke Whale, in: Marine Mammal Sensory Systems, J. Thomas, R. A. Kastelein, and A. Y. Supin, eds., Plenum Press, New York, pp. 119–135.

    Google Scholar 

  • Murayama, T., Somiya, H., Aoki, I., and Ishii, T., 1995, Retinal ganglion cell size and distribution predict visual capabilities of Dall’s porpoise, Marine Mamm. Sci. 11: 136–149.

    Article  Google Scholar 

  • Murayama, T., and Somiya, H., 1998, Distribution of ganglion cells and object localizing ability in the retina of three cetaceans, Fish. Sci. 64: 27–30.

    CAS  Google Scholar 

  • Murray, K.G., Jones, A. E., and Murray, A., 1973, Fine structure of photoreceptors in the owl monkey, Anat. Rec. 175: 673–696.

    Article  PubMed  CAS  Google Scholar 

  • Napier, J. R, and Napier, P. H., 1967, A Handbook of Living Primates, Academic Press, London.

    Google Scholar 

  • Neumann, F., and Schmidt, H. D., 1959, Optische Differenzierungsleistungen von Musteliden, Z. Vergl. Physiol. 42: 199–205.

    Google Scholar 

  • Neuringer, M., Kosobud, A., and Cochrane, G., 1981, Visual acuity of Lemur catta, a diurnal prosimian, Invest. Ophthal. Vis. Sci. 20(Suppl. 3): 49.

    Google Scholar 

  • Neuweiler, G., 1962, Bau und Leistung des Flughundauges (Pteropus giganteus Gig. Brunn.), Z. Vergl. Physiol. 46: 13–56.

    Article  Google Scholar 

  • Nicol, J. A. C., 1981, Tapeta Lucida of Vertebrates, in: Vertebrate Photoreceptor Optics, J. M. Enoch, and F. L. Tobey, eds., Springer-Verlag, Berlin, pp. 401–431.

    Google Scholar 

  • Niemitz, C., 1984, Biology of Tarsiers. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Nowak, R M., 1991, Walker’s Mammals of the World, 5th edition, The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Nussbaum, J. J., Pruett, R C., and Delori, F. C., 1981, Macular yellow pigment: The first 200 years, Retina 1: 296–310.

    Article  PubMed  CAS  Google Scholar 

  • Ogden, T. E., 1975, The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones, J.Comp. Neurol. 163: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Ogden, T. E., 1983, Nerve fiber layer of the owl monkey retina: Retinotopic organization, Invest. Ophthalmol. Vis. Sci. 24: 265–269.

    PubMed  CAS  Google Scholar 

  • Ogden, T. E., 1994, Ophthalmologic Research in the Owl Monkey, in: Aotus: The Owl Monkey, J. F. Baer, R. E. Weiler, and I. Kakoma, eds., Academic Press, New York, pp. 263–286.

    Chapter  Google Scholar 

  • Ordy, J. M., and Samorajski, T., 1968, Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates, Vision Res. 8:1205–1225.

    Article  PubMed  CAS  Google Scholar 

  • Packer, O., Hendrickson, A. E., and Curcio, C. A., 1989, Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina), J. Comp. Neurol. 288: 165–183.

    Article  PubMed  CAS  Google Scholar 

  • Pariente, G. F., 1976, Les differents aspects de la limite du tapetum lucidum chez les prosimiens, Vision Res. 16: 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Peichl, L., and Moutairou, K., 1998, Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia), Eur. J. Neurosci. 10: 2586–2594.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., and Cowey, A., 1985, The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors, Vision Res. 25: 1795–1810.

    Article  PubMed  CAS  Google Scholar 

  • Petry, H. M., Fox, R., and Casagrande, V. A., 1984, Spatial contrast sensitivity of the tree shrew, Vision Res. 24: 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., Dreher, B., Hopkins, C. S., McCall, M. J., and Brown, M., 1988, Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity, Brain Behav. Evol. 32: 39–56.

    Article  PubMed  CAS  Google Scholar 

  • Pirie, A., 1959, Crystals of riboflavin making up the tapetum lucidum in the eye of a lemur, Nature 183: 985–986.

    Article  PubMed  CAS  Google Scholar 

  • Pirie, A., 1966, The Chemistry and Structure of the Tapetum Lucidum in Animals, in: Aspects of Comparative Ophthalmology, O. Graham-Jones, ed., Pergamon, London, pp. 57–68.

    Google Scholar 

  • Polyak, S., 1957, The Vertebrate Visual System, The University of Chicago Press, Chicago.

    Google Scholar 

  • Prince, J. H., 1956, Comparative Anatomy of the Eye, Thomas, Springfield.

    Google Scholar 

  • Provis, J. M., Diaz, C. M., and Dreher, B., 1998, Ontogeny of the primate fovea: A central issue in retinal development, Prog. Neurobiol. 54: 549–581.

    Article  PubMed  CAS  Google Scholar 

  • Prusky, G. T., West, P. W. R., and Douglas, R. M., 2000, Behavioral assessment of visual acuity in mice and rats, Vision Res. 40: 2201–2209.

    Article  PubMed  CAS  Google Scholar 

  • Quigley, H. A., Coleman, A. L., and Dorman-Pease, M. E., 1991, Larger optic nerve heads have more nerve fibers in normal monkey eyes, Arch. Ophthalmol. 109: 1441–1443.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, D. T., 1990, The phylogenetic position of Mahgarita stevensi: Protoanthropoid or lemuroid? Int. J. Primatol. 11: 439–469.

    Article  Google Scholar 

  • Reymond, L., 1985, Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation, Vision Res. 25: 1477–1491.

    Article  PubMed  CAS  Google Scholar 

  • Reymond, L., 1987, Spatial visual acuity of the falcon, Falco berigora: A behavioural, optical and anatomical investigation, Vision Res. 27: 1859–1874.

    Article  PubMed  CAS  Google Scholar 

  • Ritland, S., 1982, The Allometry of the Vertebrate Eye, Doctoral dissertation, University of Chicago.

    Google Scholar 

  • Rodieck, R. W., 1973, The Vertebrate Retina, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Rodieck, R. W., 1988, The Primate Retina, in: Comparative Primate Biology, H. D. Steklis, and J. Erwin, eds., Alan R Liss, Inc, New York, pp. 203–278.

    Google Scholar 

  • Rohen, J. W., and Castenholz, A., 1967, Über die Zentralisation der Retina bei Primaten, Folia Primatol. 5: 92–147.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger, A. L., 1985, In favor of the necrolemur-tarsier hypothesis, Folia Primatol. 45: 179–194.

    Article  Google Scholar 

  • Ross, C. F., 1993, The Functions of the Postorbital Septum and Anthropoid Origins, Doctoral dissertation, Duke University.

    Google Scholar 

  • Ross, C. F., 1995, Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea, J. Hum. Evol. 29: 201–227.

    Article  Google Scholar 

  • Ross, C., 1996, Adaptive explanation for the origins of the Anthropoidea (Primates), Am. J. Primatol. 40: 205–230.

    Article  Google Scholar 

  • Ross, C. F., 2000, Into the light: The origin of Anthropoidea, Annu. Rev. Anthropol. 29: 147–194.

    Article  Google Scholar 

  • Ross, C. F., 2003, The Tarsier Fovea: Functionless Vestige or Nocturnal Adaptation?, in: Anthropoid Origins: New Visions, C. Ross, and R. F. Kay, eds., Kluwer/Plenum Press, New York, pp. 477–537 (This Volume).

    Google Scholar 

  • Ross, C. F., and Hylander, W. L., 2000, Electromyography of the anterior temporalis and masseter muscles of owl monkeys (Aotus trivirgatus) and the function of the postorbital septum, Am. J. Phys. Anthropol. 112: 455–468.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C., Williams, B., and Kay, R. F., 1998, Phylogenetic analysis of anthropoid relationships, J.Hum. Evol. 35: 221–306.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, N., 1996, The Pictorial Guide to the Living Primates, Pogonias Press, East Hampton, New York.

    Google Scholar 

  • Sanchez, R. M., Dunkelberger, G. R., and Quigley, H. A., 1986, The number and diameter distribution of axons in the monkey optic nerve, Invest. Ophthalmol. Vis. Sci. 27: 1342–1350.

    PubMed  CAS  Google Scholar 

  • Schein, S. J., 1988, Anatomy of macaque fovea and spatial densities of neurons in foveal representation, J. Comp. Neurol. 269: 479–505.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, K. L., Schmid, L. M., Wildsoet, C. F., and Pettigrew, J. D., 1992, Retinal topography in the koala (Phascolarctos cinereus), Brain Behav. Evol. 39: 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, A. H., 1940, The size of the orbit and of the eye in primates, Am. J. Phys. Anthropol. 26: 389–408.

    Article  Google Scholar 

  • Schusterman, R. J., and Balliet, R. F., 1970a, Visual acuity of the harbour seal and the steller sea lion under water, Nature 226: 563–564.

    Article  PubMed  CAS  Google Scholar 

  • Schusterman, R. J., and Balliet, R. F., 1970b, Conditioned vocalizations as a technique for determining visual acuity thresholds in sea lions, Science 169: 498–501.

    Article  PubMed  CAS  Google Scholar 

  • Seymoure, P., and Juraska, J. M., 1997, Vernier and grating acuity in adult hooded rats: The influence of sex, Behav. Neurosci. 111: 792–800.

    Article  PubMed  CAS  Google Scholar 

  • Silveira, L. C. L., Picanço-Diniz, C. W., Sampaio, L. F. S., and Oswaldo-Cruz, E., 1989, Retinal ganglion cell distribution in the cebus monkey: A comparison with the cortical magnification factors, Vision Res. 29: 1471–1483.

    Article  PubMed  CAS  Google Scholar 

  • Simons, E. L., 1995, Skulls and anterior teeth of Catopithecus (Primates: Anthropoidea) from the Eocene and anthropoid origins, Science 268: 1885–1888.

    Article  PubMed  CAS  Google Scholar 

  • Simons, E. L., 1997, Preliminary description of the cranium of Proteopithecus sylviae, an Egyptian late Eocene anthropoidean primate, Proc. Nat. Acad. Sci. USA 94: 14970–14975.

    Article  PubMed  CAS  Google Scholar 

  • Simons, E.L., 2001, The cranium of Parapithecus grangeri, an Egyptian Oligocene anthropoidean primate, Proc. Nat. Acad. Sci. USA 98: 7892–7897.

    Article  PubMed  CAS  Google Scholar 

  • Simons, E. L., and Rasmussen, D. T., 1991, The generic classification of Fayum Anthropoidea, Int. J. Primatol. 12: 163–177.

    Article  Google Scholar 

  • Simons, E. L., and Rasmussen, D. T., 1994, A whole new world of ancestors: Eocene anthropoideans from Africa, Evol. Anthropol. 3: 128–139.

    Article  Google Scholar 

  • Simons, E. L., and Rasmussen, D. T., 1996, Skull of Catopithecus browni, and early Tertiary catarrhine, Am. J. Phys. Anthropol. 100: 261–292.

    Article  PubMed  CAS  Google Scholar 

  • Simons, E. L., Seiffert, E. R., Chatrath, P. S., and Attia, Y., 2001, Earliest record of a parapithecid anthropoid from the Jebel Qatrani Formation, northern Egypt, Folia Primatol. 72: 316–331.

    Article  PubMed  CAS  Google Scholar 

  • Sinex, D. G., Burdette, L. J., and Pearlman, A. L., 1979, A psychophysical investigation of spatial vision in the normal and reeler mutant mouse, Vision Res. 19: 853–857.

    Article  PubMed  CAS  Google Scholar 

  • Snodderly, D. M., Brown, P. K., Delori, F. C., and Auran, J. D., 1984a, The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas, Invest. Ophthal. Vis. Sci. 25: 660–673.

    PubMed  CAS  Google Scholar 

  • Snodderly, D. M., Auran, J. D., and Delori, F. C., 1984b, The macular pigment. II. Spatial distribution in primate retinas, Invest. Ophthal. Vis. Sci. 25: 674–685.

    PubMed  CAS  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J., 1995, Biometry, 3rd edition, W. H. Freeman and Company, New York.

    Google Scholar 

  • Spong, P., and White, D., 1971, Visual acuity and discrimination learning in the dolphin (Lagenorhynchus obliquidens), Exp. Neurol. 31: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Stair, R., and Johnston, R., 1953, Ultraviolet spectral radiant energy reflected from the moon. J. Res. Natl. Bureau Std. 51: 81–84.

    Article  Google Scholar 

  • Stark, W. S., 1987, Photopic sensitivities to ultraviolet and visible wavelengths and the effects of the macular pigments in human aphakic observers, Curr. Eye Res. 6: 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Stark, W. S., and Tan, K. E. P. W., 1982, Ultraviolet light: Photosensitivity and other effects on the visual system, Photochem. Photobiol. 36: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Stark, W. S., Wagner, R. H., and Gillespie, C. M., 1994, Ultraviolet sensitivity of three cone types in the aphakic observer determined by chromatic adaptation, Vision Res. 34: 1457–1459.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R. H., Reid, M., and Lacy, P., 1973, The distribution of rods and cones in the retina of the cat (Felis domesticus),J. Comp. Neurol. 148: 229–248.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, H., Frahm, H. D., and Baron, G., 1984, Comparison of brain structure volumes in Insectivora and Primates. IV. Non-cortical visual structures, J.Hirnforsch. 25: 385–403.

    PubMed  CAS  Google Scholar 

  • Stone, J., and Johnston, E., 1981, The topography of the primate retina: A study of the human, bushbaby, and new-and old-world monkeys, J. Comp. Neurol. 196: 205–223.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., and Halasz, P., 1989, Topography of the retina in the elephant Loxodonta africana, Brain Behav. Evol. 34: 84–95.

    Article  PubMed  CAS  Google Scholar 

  • Suthers, R. A., 1966, Optomotor responses by echolocating bats, Science 152: 1102–1104.

    Article  PubMed  CAS  Google Scholar 

  • Szél, Á., Röhlich, P., Caffé, A. R., Juliusson, B., Aguirre, G., and van Veen, T., 1992, Unique topographic separation of two spectral classes of cones in the mouse retina, J. Comp. Neurol. 325: 327–342.

    Article  PubMed  Google Scholar 

  • Szél, Á., Csorba, G., Caffé, A. R, Szél, Gy., Röhlich, P., and van Veen, T., 1994, Cell Tissue Res. 276: 143–150.

    Article  PubMed  Google Scholar 

  • Tetreault, N., Hakeem, A., and Allman, J. M., 2003, The Distribution and Size of Retinal Ganglion Cells in Microcebus murinus, Cheirogaleus medius, and Tarsius syrichta: Implications for the Evolution of Sensory Systems in Primates, in: Anthropoid Origins: New Visions, C. Ross, and R F. Kay, eds., Kluwer/Plenum Press, New York, pp. 463–475 (This Volume).

    Google Scholar 

  • Thomson, L. R., Toyoda, Y., Langner, A., Delori, F. C., Garnett, K. M., Craft, N. et al., 2002, Elevated retinal zeaxanthin in prevention of light-induced photoreceptor cell death in quail, Invest. Ophthal. Vis. Sci. 43: 3538–3549.

    PubMed  Google Scholar 

  • Thorington, R. W., Muckenhirn, N. A., and Montgomery, G. G., 1976, Movements of a Wild Night Monkey, Aotus trivirgatus, in: Neotropical Primates—Field Studies and Conservation, R. W. Thorington, and P. G. Heltne, eds., National Academy of Science Press, Washington, D.C.

    Google Scholar 

  • Tiao, Y. C., and Blakemore, C., 1976, Regional specialization in the golden hamster’s retina, J. Comp. Neurol. 168: 439–458.

    Article  PubMed  CAS  Google Scholar 

  • Timney, B., and Keil, K., 1992, Visual acuity in the horse, Vision Res. 32: 2289–2293.

    Article  PubMed  CAS  Google Scholar 

  • Troilo, D., Howland, H. C., and Judge, S. J., 1993, Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus), Vision Res. 33: 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  • Vakkur, G. J., and Bishop, P. O., 1963, The schematic eye in the cat, Vision Res. 3: 357–381.

    Article  Google Scholar 

  • van Heyningen, R., 1971, Fluorescent derivatives of 3-hydroxy-L-kynurenine in the lens of man, the baboon and the grey squirrel, Biochem. J. 123: 30–31p.

    Google Scholar 

  • van Heyningen, R., 1973, The Glucoside of 3-hydroxykynurenine and Other Fluorescent Compounds in the Human Lens, in: The Human Lens in Relation to Cataract, Ciba Foundation Symposium 19 (new series). Elsevier, Amsterdam, pp. 151–171.

    Google Scholar 

  • Van Hof, M. W., 1967, Visual acuity in the rabbit, Vision Res. 7: 749–751.

    Article  PubMed  Google Scholar 

  • Vaney, D. I., 1980, The grating acuity of the wild European rabbit, Vision Res. 20: 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Vaney, D. I., and Hughes, A., 1976, The rabbit optic nerve: Fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count, J. Comp. Neurol. 170: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Wakakuwa, K., Watanabe, M., Sugimoto, T., Washida, A., and Fukuda, Y., 1987, An electron microscopic analysis of the optic nerve of the eastern chipmunk (Tamias Sibiricns asiaticus): Total fiber count and retinotopic organization, Vision Res. 27: 1891–1901.

    Article  PubMed  CAS  Google Scholar 

  • Walker, A., 1967, Patterns of Extinction among Subfossil Madagascan Lemuroids, in: Pleistocene Extinctions: The Search for a Cause, P. S. Martin, and H. E. Wright, eds., Yale University Press, New Haven, pp. 425–432.

    Google Scholar 

  • Walls, G. L., 1942, The Vertebrate Eye and its Adaptive Radiation, Hafner Publishing Company, New York.

    Book  Google Scholar 

  • Walls, G. L., 1953, The lateral geniculate nucleus and visual histophysiology, Univ. California Publications Physiol. 9: 1–100.

    Google Scholar 

  • Wässle, H., and Boycott, B. 1991, Functional architecture of the mammalian retina. Physiol. Rev. 71: 447–480.

    PubMed  Google Scholar 

  • Wässle, H., Grünert, U., Röhrenbeck, J., and Boycott, B. B., 1989, Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341: 643–646.

    Article  PubMed  Google Scholar 

  • Wässle, H., Grünert, U., Röhrenbeck, J., and Boycott, B. B., 1990, Retinal ganglion cell density and cortical magnification factor in the primate. Vision Res. 30: 1897–1911.

    Article  PubMed  Google Scholar 

  • Wässle, H., Grünert, U., Martin, P. R, and Boycott, B. B., 1994, Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey. Vision Res. 34: 561–579.

    Article  PubMed  Google Scholar 

  • Weale, R. A., 1966, Why does the human retina possess a fovea? Nature 212: 255–256.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S. V., and Kaas, J. H., 1976, The sizes and distribution of ganglion cells in the retina of the owl monkey. Vision Res. 16: 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, K. C., and Rakic, P., 1990, Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J. Neurosci. 10: 3390–3401.

    PubMed  CAS  Google Scholar 

  • Wilder, H. B., Grünert, U., Lee, B. B., and Martin, P. R., 1996, Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus, Vis. Neurosci. 13: 335–352.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve, J.Comp. Neurol. 246: 32–69.

    Article  PubMed  CAS  Google Scholar 

  • Wolin, L. R., and Massopust, L. C., 1970, Morphology of the Primate Retina, in: The Primate Brain, C. R. Noback, and W. Montagna, Eds., Appleton-Century-Crofts, New York, pp. 1–27.

    Google Scholar 

  • Woodhouse, J. M., and Barlow, H. B., 1982, Spatial and Temporal Resolution and Analysis, in: The Senses, H. B. Barlow, and J. D. Mollon, eds., Cambridge University Press, Cambridge, pp. 133–164.

    Google Scholar 

  • Woollard, H. H., 1927, The differentiation of the retina in primates, Proc. ZooL Soc. Lond. 1927: 1–17.

    Google Scholar 

  • Wooten, B. R., and Hammond, B. R., 2002, Macular pigment: Influences on visual acuity and visibility, Prog. Ret. Eye Res. 21: 225–240.

    Article  CAS  Google Scholar 

  • Wright, P. C., 1981, The Night Monkeys, Genus Aotus, in: Ecology and Behavior of Neotropical Primates, A. F. Coimbra-Filho, and R. A. Mittermeier, eds., Academia Brasiliera de Ciências, Rio de Janeiro, pp. 211–240.

    Google Scholar 

  • Yamada, E. S., Marshak, D. W., Silveira, L. C. L., and Casagrande, V. A., 1998, Morphology of P and M retinal ganglion cells of the bush baby, Vision Res. 38: 3345–3352.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, E. S., Silveira, L. C. L., Perry, V. H., and Franco, E. C. S., 2001, M and P retinal ganglion cells of the owl monkey: Morphology, size and photoreceptor convergence, Vision Res. 41: 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Young, H. M., and Pettigrew, J. D., 1991, Cone photoreceptors lacking oil droplets in the retina of the echidna, Tachyglossus aculeatus (Monotremata), Vis. Neurosci. 6: 409–420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirk, E.C., Kay, R.F. (2004). The Evolution of High Visual Acuity in the Anthropoidea. In: Ross, C.F., Kay, R.F. (eds) Anthropoid Origins. Developments in Primatology: Progress and Prospects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8873-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8873-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4700-2

  • Online ISBN: 978-1-4419-8873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics