Skip to main content

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 2))

Abstract

The free-living nematode Caenorhabditis elegans has proven to be an excellent model organism for studying animal development and neurobiology. Analysis of the fully sequenced genome of C. elegans predicts that there are ∼19,000 genes, of which ∼ 2% are proteases. The aminopeptidase family of C. elegans is relatively large and the use of RNAi and gene deletion mutants has shown that some family members have roles in embryogenesis, the germ line and growth. Expression pattern analysis indicates that other family members are likely to have roles in neurobiology, osmoregulation and digestion. A significant proportion of C. elegans aminopeptidases lack crucial active site residues, abrogating a direct role in the hydrolysis of peptide substrates. These so-called non-peptidase homologues include nicastrin, which has been shown using C. elegans deletion mutants to have a key role in Notch signalling. The functions of many of the C. elegans aminopeptidases are most probably conserved in animal and plant parasitic nematodes. Nevertheless, given the complexity of parasite life-cycles, parasitic nematode aminopeptidases are likely to have evolved novel biological roles, the best characterised to date being immunomodulation and immunoprotection. These studies are now being exploited to allow parasite aminopeptidases to be used as a novel therapeutic strategy for inflammatory diseases and also as vaccine candidates for the control of livestock infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, C. J., Harnett, M. M., Harnett, W., Kelly, S. M., Svergun, D. I. and Byron, O., 2003, 19 A solution structure of the filarial nematode immunomodulatory protein, ES-62. Biophys. J. 84: 489–500.

    Article  PubMed  CAS  Google Scholar 

  • Baset, H. A., Ford-Hutchinson, A. W. and O'Neill, G. P., 1998, Molecular cloning and functional expression of a Caenorhabditis elegans aminopeptidase structurally related to mammalian leukotriene A4 hydrolases. J. Biol. Chem. 273: 27978–27987.

    Article  PubMed  CAS  Google Scholar 

  • Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J. and Kimble, J., 1999, The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev. Biol. 216: 382–393.

    CAS  Google Scholar 

  • Brooks, D. R. and Isaac, R. E., 2002, Functional genomics of parasitic worms: the dawn of a new era. Parasitol. Int. 51: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. R., Hooper, N. M. and Isaac, R. E., 2003, The Caenorhabditis elegans orthologue of mammalian puromycin-sensitive aminopeptidase has roles in embryogenesis and reproduction. J. Biol. Chem. 278: 42795–42801.

    Article  PubMed  CAS  Google Scholar 

  • Davey, K. G. and Sommerville, R. I., 1974, Molting in a parasitic nematode, Phocanema decipiens. VII. The mode of action of the ecdysial hormone. Int. J. Parasitol. 4: 241–259.

    Article  PubMed  CAS  Google Scholar 

  • Douch, P. G. C., 1978, L-Leucyl-b-naphthylamidases of the cestode, Moniezia expansa, and the nematode, Ascaris suwn. Comp. Biochem. Physiol. 60B: 63–66.

    CAS  Google Scholar 

  • Fagan, R., Swindells, M., Overington, J. and Weir, M., 2001, Nicastrin, a presenilin-interacting protein, contains an aminopeptidase/transferrin receptor superfamily domain. Trends Biochem. Sci. 26: 213–214.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, D. L., Rhodes, M. B., Marsh, C. L. and Payne, L. C., 1969, Resistance of immunised animals to infection by the larvae of the large roundworm of swine (Ascaris suum). Fed. Proc. 28: 497.

    Google Scholar 

  • Goutte, C., Hepler, W., Mickey, K. M. and Priess, J. R. (2000). aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling. Development 127, 2481–2492.

    PubMed  CAS  Google Scholar 

  • Harnett, W., Harnett, M. M. and Byron, O., 2003, Structural/functional aspects of ES-62 — a secreted immunomodulatory phosphorylcholine-containing filarial nematode glycoprotein. Curr. Prot. Pept. Sci. 4: 59–71.

    Article  CAS  Google Scholar 

  • Harnett, W., Worms, M. J., Kapil, A., Grainger, M. and Parkhouse, R. M., 1989, Origin, kinetics of circulation and fate in vivo of the major excretory-secretory product of Acanthocheilonema viteae. Parasitol. 99: 229–239.

    Article  Google Scholar 

  • Haslam, S. M., Coles, G. C., Munn, E. A., Smith, T. S., Smith, H. F., Morris, H. R. and Dell, A., 1996, Haemonchus contortus glycoproteins contain N-linked oligosaccharides with novel highly fucosylated core structures. J. Biol. Chem. 271: 30561–30570.

    Article  PubMed  CAS  Google Scholar 

  • Hishida, R., Ishihara, T., Kondo, K. and Katsura, I., 1996, hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1. Embo J. 15: 4111–4122.

    PubMed  CAS  Google Scholar 

  • Hong, X., Bouvier, J., Wong, M. M., Yamagata, G. Y. and McKerrow, J. H., 1993, Brugia pahangi: identification and characterization of an aminopeptidase associated with larval molting. Exp. Parasitol. 76: 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Huang, P., Robinson, M. K., Stern, M. J. and Jin, Y., 2003, UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130: 3147–3161.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, T. C. and Kaplan, J. M., 2003, The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J. Neurosci. 23: 2122–2130.

    PubMed  CAS  Google Scholar 

  • Joshua, G. W., 2001, Functional analysis of leucine aminopeptidase in Caenorhabditis elegans. Mol. Biochem. Parasitol. 113: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, W. G., Xu, S., Montgomery, M. K. and Fire, A., 1997, Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146: 227–238.

    PubMed  CAS  Google Scholar 

  • Knox, D. P. and Smith, W. D., 2001, Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Vet. Parasitol. 100: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Kopan, R. and Goate, A., 2002, Aph-2/Nicastrin: an essential component of gamma-secretase and regulator of Notch signaling and Presenilin localization. Neuron 33: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Laurent, V., Brooks, D. R., Coates, D. and Isaac, R. E., 2001, Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. Eur. J. Biochem. 268: 5430–5438.

    Article  PubMed  CAS  Google Scholar 

  • Levitan, D., Yu, G., St. George Hyslop, P. and Goutte, C., 2001, APH-2/Nicastrin functions in LIN-12/Notch signaling in the Caenorhabditis elegans somatic gonad. Dev. Biol. 240: 654–661.

    Article  PubMed  CAS  Google Scholar 

  • Madi, A., Mikkat, S., Ringel, B., Ulbrich, M., Thiesen, H. J. and Glocker, M. O., 2003, Mass spectrometric proteome analysis for profiling temperature-dependent changes of protein expression in wild-type Caenorhabditis elegans. Proteomics 3: 1526–1534.

    Article  PubMed  CAS  Google Scholar 

  • Masler, E. P., Kovaleva, E. S. and Sardanelli, S., 2001, Aminopeptidase-like activities in Caenorhabditis elegans and the soybean cyst nematode, Heterodera glycines. J. Helminthol. 75: 267–272.

    CAS  Google Scholar 

  • Masler, E. P., 2002, Aminopeptidases in Caenorhabditis elegans and Panagrellus redivivus: detection using peptide and non-peptide substrates. J. Helminthol. 76: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Masler, E. P., 2003, In vitro metabolism of an insect neuropeptide by homogenates of the nematode Caenorhabditis elegans. J. Helminthol. 77: 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Mclnnes, I. B., Leung, B. P., Hamett, M., Gracie, J. A., Liew, F. Y. and Harnett, W., 2003, A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J. Immunol. 171: 2127–2133.

    Google Scholar 

  • McLaren, D. J., Burt, J. S. and Ogilvie, B. M., 1974, The anterior glands of adult Necator americanns (Nematoda: Strongyloidea). II. Cytochemical and functional studies. Int. J. Parasitol. 4: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., Li, H. and Kenyon, C., 2003, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Newton, S. E. and Munn, E. A., 1999, The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitol. Today 15: 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki, K., Hisamoto, N. and Matsumoto, K., 2000, A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. Science 288: 2205–2208.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, J., Mitreva, M., Hall, N., Blaxter, M. and McCarter, J.P., 2003, 400 000 nematode ESTs on the net. Trends Parasitol. 19:, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Popeijus, H., Blok, V. C. Cardie, L., Bakker, E., Phillips, M. S., Helder, J. Smant, G. and Jones, J. T., 2000, Analysis of genes expressed in second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida using the expressed sequence tag approach. Nematology 2: 567–574.

    Article  CAS  Google Scholar 

  • Reinke, V., Smith, H. E., Nance, J., Wang, J., Van Doren, C., Begley, R., Jones, S. J., Davis, E. B., Scherer, S., Ward, S., and Kim, S. K., 2000, A global profile of germline gene expression in C. elegans. Mol. Cell 6: 605–616.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads, M. L., Fetterer, R. H. and Urban, J. F. Jr., 1997, Secretion of an aminopeptidase during transition of third-to fourth-stage larvae of Ascaris suum. J. Parasitol. 83: 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads, M. L. and Fetterer, R. H., 1998, Purification and characterisation of a secreted aminopeptidase from adult Ascaris suum. Int. J. Parasitol. 28: 1681–1690.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, M. B., Marsh, C. L. and Ferguson, D. L., 1966, Studies in helminth enzymology. V. An aminopeptidase of Ascaris suum which hydrolyses L-leucyl-b-naphthylamide. Exp. Parasitol. 19: 42–51.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, M. B., Marsh, C. L. and Ferguson, D. L., 1969a, Ascaris suum: Purification and characterization of an intestinal aminopeptidase. Exp. Parasitol. 26: 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, M. B., Marsh, C. L. and Ferguson, D. L., 1969b, Studies in helminth enzymology. VI. Aminopeptidases from uterine extracts of Ascaris suum. Exp. Parasitol. 26: 140–149.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, W. P. and Brooks, F., 1977, The mechanism of hatching of eggs of Haemonchus contortus. Int. J. Parasitol. 7: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, W. P., 1982, Enzymes in the exsheathing fluid of nematodes and their biological significance. Int. J. Parasitol. 12: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Sajid, M., Isaac, R. E. and Harrow, I. D., 1997, Purification and properties of a membrane aminopeptidase from Ascaris suum muscle that degrades neuropeptides AF1 and AP2. Mol Biochem. Parasitol. 89: 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Sajid, M., Keating, C., Holden-Dye, L., Harrow, I. D. and Isaac, R. E., 1996, Metabolism of AF1 (KNEFIRF-NH2) in the nematode, Ascaris suum, by aminopeptidase, endopeptidase and deamidase enzymes. Mol. Biochem. Parasitol. 75: 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. S., Graham, M., Munn, E. A., Newton, S. E., Knox, D. P., Coadwell, W. J., McMichael-Phillips, D., Smith, H., Smith, W. D. and Oliver, J. J., 1997, Cloning and characterization of a microsomal aminopeptidase from the intestine of the nematode Haemonchus contortus. Biochim. Biophys. Acta 1338: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. D., Smith, S. K. and Pettit, D., 2000, Evaluation of immunization with gut membrane glycoproteins of Ostertagia ostertagi against homologous challenge in calves and against Haemonchus contortus in sheep. Parasite Immunol. 22: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. D., Pettit, D. and Smith, S. K., 2001, Cross-protection studies with gut membrane glycoprotein antigens from Haemonchus contortus and Teladorsagia circumcincta. Parasite Immunol. 23: 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Stepek, G., Auchie, M., Tate, R., Watson, K., Russell, D. G., Devaney, E. and Harnett, W., 2002, Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES62, is stage specific. Parasitology 125: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium, 1998, Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018.

    Article  Google Scholar 

  • Walker, A. K., Rothman, J. H., Shi, Y. and Blackwell, T. K., 2001, Distinct requirements for C.elegans TAF(II)s in early embryonic transcription. Embo J. 20: 5269–5279.

    Article  PubMed  CAS  Google Scholar 

  • Wen, C., Metzstein, M. M. and Greenwald, I., 1997, SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development 124: 4759–4767.

    PubMed  CAS  Google Scholar 

  • Yatsuda, A. P., Krijgsveld, J., Cornelissen, A. W., Heck, A. J. and de Vries, E., 2003, Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J. Biol. Chem. 278: 16941–16951.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Ma, C., Delohery, T., Nasipak, B., Foat, B. C., Bounoutas, A., Bussemaker, H. J., Kim, S. K. and Chalfie, M., 2002, Identification of genes expressed in C. elegans touch receptor neurons. Nature 418: 331–335.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brooks, D.R., Elwyn Isaac, R. (2004). Nematode Aminopeptidases. In: Hooper, N.M., Lendeckel, U. (eds) Aminopeptidases in Biology and Disease. Proteases in Biology and Disease, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8869-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8869-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4698-2

  • Online ISBN: 978-1-4419-8869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics