Data Assimilation for Ctm Based on Optimum Interpolation and Kalman Filter

  • Johannes Flemming
  • Maarten van Loon
  • Rainer Stern

Abstract

The aim of this paper is to compare the performance of two data assimilation schemes for the Eulerian chemistry transport model REM/CALGRID. Optimum Interpolation (OI) and Kaiman Filtering (KF) have been applied to assimilate hourly O3 and NO2 observations in a model run for July 2001. The comparison comprises the structure of the obtained model error covariances and the analysed concentration fields. In addition, an example of an assessment of model parameters such as turbulent exchange coefficients by means of the Kaiman filter is given.

Keywords

Europe Covariance Ozone Assimilation Turkey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouttier, F. und Courtier, P., 1999. Data assimilations concepts and methods, in Data assimilations concepts and methods, eds. F. Bouttier und P. Courtier, Meteorological Training Course Lecture Series, ECMWF, Reading.Google Scholar
  2. Daley, R., 1991, Atmospheric Data Analysis, Cambridge University Press, Cambridge.Google Scholar
  3. Flemming, J., 2003, Immissionsfelder aus Beobachtung, Modellierung und deren Kombination, PhD-thesis FU-Berlin, http://www.diss.fu-berlin.de/2003/71/.
  4. Flemming, J., Stern, R. Reimer, E., 2002, Data assimilation for CT-Modelling based on optimum Interpolation, in ITM Air pollution modelling and its applications XV, eds. C. Borrego und G. Schayes, NATO CMS, Kluwer Academic / Plenum Publishers, New York.Google Scholar
  5. Hollingsworth, A. and Lönnberg, P., 1986, The statistical structure of short-range forecast errors as determined from radiosonde data, Part I: The wind field, Tellus, 38:A, 111–136.Google Scholar
  6. Reimer, E. and Scherer, B., 1992, An operational meteorological diagnostic system for regional air pollution analysis and long-term modelling, in: Air Pollution Modelling and its Applications IX., van Doop, H., ed., Plenum Press.Google Scholar
  7. Stern, R., Yarmatino, R. und Graff, A., 2003, Dispersion modeling within the European community’s air quality directives: long term modeling of O3, PM10 and NO2, in proceedings of 26 th ITM on Air Pollution Modelling and its Application. May 26–30, 2003, Istanbul, Turkey.Google Scholar
  8. Van Loon, M. and Heemink, A.W., 1997, Kaiman Filtering for non linear atmopsheric chemistry models: First experiences. Technical Report MAS-R9711, CWI, Amsterdam.Google Scholar
  9. Van Loon, M., Builtjes, P. H. J., Segers, A. und Roemer, M., 1999, Reactive Trace Gas Assimilation, TNO-MEP report, Apeldorn.Google Scholar
  10. Van Loon, M., Builtjes, P.and de Leeuw, G., 2002, PM2.5 concentrations over Europe combining satellite data and modelling, in ITM Air pollution modelling and its applications XV, eds. C. Borrego und G. Schayes, NATO CMS, Kluwer Academic / Plenum Publishers, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Johannes Flemming
    • 1
  • Maarten van Loon
    • 2
  • Rainer Stern
    • 1
  1. 1.Institut für MeteorologieFreie Universität BerlinBerlinGermany
  2. 2.TNO-MEP ApeldornThe Netherlands

Personalised recommendations