Advertisement

Modelling of Atmospheric Mercury Transport, Chemistry and Deposition: Recent Achievements and Current Problems

  • Alexey Ryaboshapko
  • Alexey Gusev
  • Ilia Ilyin
  • Oleg Travnikov

Abstract

Heavy metals (HMs) and first of all lead, cadmium and mercury are among the most important pollutants in the framework of the Convention on Long-Range Transboundary Air Pollution (CLRTAP). This seems to be natural in view of their long lifetime in the atmosphere, their high toxicity and capability to accumulate in trophic chains. Most European countries, Canada and the USA have prepared a special Protocol on control of HM emissions to the atmosphere, which is at the stage of ratification now. The Protocol implementation is supported by the activity of two Centres of CLRTAP — Chemical Coordinating Center (monitoring of HMs) and Meteorological Synthesizing Center “East” (modelling of HMs). The latter one is called upon to develop mathematical models of the long-range atmospheric transport of HMs, to use them for the assessment of transboundary pollution in Europe and to inform the participating countries of the current situation and long-term trends of HM pollution levels.

Keywords

Atmospheric Transport Elemental Mercury Mercury Emission Atmospheric Mercury Mercury Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axenfeld, F., Münch, J., and Pacyna, J.M., 1991, Belastung von Nord-und Ostsee durch ökologisch gefährliche Stoffe am Beispiel atmosphärischer Quecksilberkomponenten. Teilprojekt: Europäische Test-Emissionensdatenbasis von Quecksilber-Komponenten für Modellrechnungen”. Dornier, Report 104 02 726, 99.Google Scholar
  2. Berg, T., Bartnicki, J., Munthe. J., Lattila H., Hrehoruk, J., and Mazur, A., 1999, Atmospheric mercury in the European Arctic: Measurements and Modelling, Atmos. Environ., 35: 2569.CrossRefGoogle Scholar
  3. Borrego., Tchepel, O., and Carvalho, A.C., 2000, Model quality assurance, in Transport and Chemical Transphormation in the Troposphere, eds. P. Midgley, M. Reuther, and M. Williams, Springer, Berlin, pp. 21–26.Google Scholar
  4. Bott, A., 1989, Reply to comment on “A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes”, Monthly Weather Review, 117: 2633.CrossRefGoogle Scholar
  5. Carpi, A., and Lindberg, S.E., 1998, Application of a teflon™ dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmos. Environ., 32: 873.CrossRefGoogle Scholar
  6. Ebinghaus, R., Kock, H.H., Coggins, A.M., Spain, T.G., Jennings, S.G., Temme, Ch., 2002, Long-term measurements of atmospheric mercury at Mace Head, Irish west coast between 1995 and 2001, Atmos. Environ., 36: 5267.CrossRefGoogle Scholar
  7. Gustin, M.S., Rasmussen, P., Edwards, G., Schroeder, W., and Kemp, J., 1999, Application of a laboratory gas exchange chamber for assessment of in situ mercury emissions, J. of Geophysical Research, 104D: 21873.CrossRefGoogle Scholar
  8. Hall, B., 1995, The gas phase oxidation of mercury by ozone, Water, Air and Soil Pollution, 80: 301.CrossRefGoogle Scholar
  9. Ilyin, I., Munthe, J., Petersen, G., and Ryaboshapko, A., 2000, Numerical Models of Long-range Atmospheric Transport of Heavy Metals: Current State, and Direction of Further Development, In: WMO report No. 136 “WMO/EMEP/UNEP Workshop on Modelling of Atmospheric Transport and Deposition of Persistent Organic Pollutants and Heavy Metals”, Vol. I. Geneva, Switzerland, 92.Google Scholar
  10. Ilyin, I., Ryaboshapko, A., Afinogenova, O., Berg, T., Hjellbrekke, A.-G., Lee, D., 2002, Lead, cadmium and mercury transboundary pollution in 2000, EMEP/MSC-E Report 5/2002, 131 p.; http://www.msceast.org.
  11. Iversen, T., Saltbones, J., Sandnes, H., Eliassen, A., and Hov, O., 1989, Airborne transboundary transport of sulphur and nitrogen over Europe — model descriptions and calculations, EMEP/MSC-W Report 2/89, Meteorological Synthesizing Centre — West, Oslo, Norway, 92 p.Google Scholar
  12. Jonsen, J., and Berge, E., 1995, Some preliminary results on transport and deposition of nitrogen components by use of Multilayer Eulerian Model, EMEP/MSC-W Report 4/95, Meteorological Synthesizing Centre-West, Oslo, Norway, 25 p.Google Scholar
  13. Kim, J.P., and Fitzgerald, W.F., 1986, Sea-air partitioning of mercury in the Equatorial Pacific Ocean, Science, 231:1131.CrossRefGoogle Scholar
  14. Lamborg, C.H., Fitzgerald, W.F., O’Donnell, J., and Torgersen, T., 2002, A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66:1105.CrossRefGoogle Scholar
  15. Lin, C.-J., and Pehkonen S., 1998, Two-phase model of mercury chemistry in the atmosphere, Atmos. Environ., 32:2543.Google Scholar
  16. Lindberg, S.E., Brooks, S., Lin, C.-J., Scott, K.J., Landis, M.S., Stevens, R.R., Goodsite, M., and Richter, A., 2002, Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise, Environ. Sci. Technol., 36: 1245.CrossRefGoogle Scholar
  17. Lu, J.Y., Schroeder, W.H., Barrie LA., Steffen, A., Welch H.E., Martin, K., Lockhart W.L., Hunt R.V., Boila, G., Richter, A., 2001, Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophys. Res. Letters, 28: 3219.CrossRefGoogle Scholar
  18. Milford, J., and Davidson, C., 1985, The size of particulate trace elements in the atmosphere — a review, JAPCA, 35:1249.Google Scholar
  19. Munthe, J., 1992, The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., 26A: 1461.Google Scholar
  20. Pacyna, E.G., and Pacyna, J.M., 2002, Global emission of mercury from anthropogenic sources in 1995. WASP, 137: 149.Google Scholar
  21. Pacyna, E.G., Pacyna, J.M., and Pirrone, N., 2001, Atmospheric mercury emissions in Europe from anthropogenic sources, Atmos. Environ., 35: 2987.CrossRefGoogle Scholar
  22. Petersen, G., Munthe, J., Pleijel, K., Bloxam, R., and Kumar, A., 1998, A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the tropospheric chemistry module (TCM), Atmos. Environ., 32: 829.CrossRefGoogle Scholar
  23. Pleijel, K., and Munte, L., 1995, Modeling the atmospheric mercury cycle — chemistry in fog droplets, Atmos. Environ., 29:1441.CrossRefGoogle Scholar
  24. Poissant, L., and Casimir, A., 1998, Water-air and soil-air exchange rate of total gaseous mercury measured at background sites, Atmos. Environ., 32: 883.CrossRefGoogle Scholar
  25. Ruijgrok, W., Davidson, C.I., and Nicholson, K.W., 1997, Dry deposition of particles. Implications and recommendations for mapping of deposition over Europe, Tellus, 47B: 587.Google Scholar
  26. Ryaboshapko, A., Ilyin, I., Artz, R., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Davignon, D., Draxler, R., Ebinghaus, R., Munthe, J., Petersen, G., and Syrakov, D., 2002, Intercomparison study of numerical models for long-range atmospheric transport of mercury, EMEP/MSC-E Technical Note 10/2002, 19 p.; http://www.msceast.org.
  27. Ryaboshapko, A., Ilyin, I., Gusev, A., and Afinogenova, O., 1998, Mercury in the Atmosphere of Europe: Concentrations, deposition patterns, transboundary fluxes, Meteorological Synthesizing Centre — East, EMEP/MSC-E Report 7/98, Moscow, 55 p.; http://www.msceast.org.
  28. Ryaboshapko, A., and Korolev, V., 1997, Mercury in the atmosphere: estimates of model parameters. EMEP/MSC-E Report 7/97, Moscow, 60 p., http://www.msceast.org.
  29. Sander, R., 1997, Henry’s law constants available on the Web, EUROTRAC Newsletter, 18: 24; http://www.science.yorku.ca/cac/people/sander/res/henry.html.Google Scholar
  30. Schroeder, W., Anlauf, K., Barrie, L., Lu, J., Steffen, A., Schneeberger, D., and Berg, T., 1998, Arctic springtime depletion of mercury, Nature, 394: 331.CrossRefGoogle Scholar
  31. Seigneur, C., Karamchandani, P., Lohman, K., Vijayaraghavan, K., and Shia R.-L., 2001, Multiscale modeling of the atmospheric fate and transport of mercury, J. of Geophysical Research, 106-D: 27795.CrossRefGoogle Scholar
  32. Tokos, J., Hall, B., Calhoun, J., amd Pretbo E., 1998, Homogeneous gas-phase reaction of HgO with H2O2,03, CH3I, and (CH3)2S: implications for atmospheric Hg cycling, Atmos. Environ., 32: 823.CrossRefGoogle Scholar
  33. Travnikov, O., and Ryaboshapko, A., 2002, Modelling of Mercury Hemispheric Transport and Depositions, EMEP/MSC-E Technical Report 6/2002, 67 p.; http://www.msceast.org.
  34. Wesely, M.L., Cook, D.R., Hart R.L., and Speer, R.E., 1985, Measurements and parameterization of particulate sulfur deposition over grass. J. of Geophysical Research, 90-D: 2131.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Alexey Ryaboshapko
    • 1
  • Alexey Gusev
    • 1
  • Ilia Ilyin
    • 1
  • Oleg Travnikov
    • 1
  1. 1.EMEP Meteorological Synthesizing Center “East”MoscowRussia

Personalised recommendations