Skip to main content

Abstract

Enzymatic reactions and biotransformations catalyzed by fungal enzymes and used in industry, agriculture, food technology, and medicine have increased in importance tremendously in recent years. Many efforts have been made to detect new sources of enzymes and to adapt these biological catalysts, for example, by methods of gene technology and protein engineering, to new applications for human or commercial benefit. This will be the subject of approximately half of this chapter. On the other hand, enzymatic activities of fungi can damage various products of human endeavor. Fungi may use these products for their growth and development, degrading, destroying, or inactivating many substances and products in the process. This phenomenon is the cause of serious losses such as the destruction of food supplies and plant stocks, the ruination of wood structures, the damage of leather or textile goods, or the inactivation of food preservatives, biocides, and fungicides. These fungal activities and the enzymes involved will be covered in the second part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadulla, E., Tzanov, T., Costa, S., Robra, K.-H., Cavaco-Paulo, A., and Gübitz, G.M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 66, 3357–3362.

    Article  PubMed  CAS  Google Scholar 

  • Abelson, P.H. (1999). A potential phosphate crisis. Science 283, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Acunaarguelles, M.E., Gutierrezrojas, M., Viniegragonzales, G., and Favelatorres, E. (1995). Production and properties of 3 pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 43, 808–814.

    Article  CAS  Google Scholar 

  • Adler-Nissen, J. (1987). Newer uses of microbial enzymes in food processing. Trends Biotechnol. 5, 170–174.

    Article  CAS  Google Scholar 

  • Adeboya, M.O., Edwards, R.L., Lassoe, T., Maitland, D.J., Shields, L., and Whalley, A.J.S. (1996). Metabolites of the higher fungi. 29. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. A spirocyclohexadienone, a depsidone and three diphenyl ethers: Keys in the depsidone biosynthetic pathway from a member of the fungus Xylaria. J. Chem. Soc. Perk. Trans. I 1996, 1419–1425.

    Google Scholar 

  • Adriaens, P. and Grbic-Galić, D. (1994). Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29, 2253–2259.

    Article  CAS  Google Scholar 

  • Aggelis, G., Ehaliotis, C., Nerud, F., Stoychev, I., Lyberatos, G., and Zervakis, G.I. (2002). Evaluation of whiterot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl. Microbiol. Biotechnol. 59, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Ahlborg, U.G. and Thunberg, T.M. (1980). Chlorinated phenols: Occurrence, toxicity, metabolism and environmental impact. CRC Crit. Rev. Toxicol. 7, 1–36.

    Article  CAS  Google Scholar 

  • Ahn, M.Y., Dec, J., Kim, J.E., and Bollag, J.M. (2000). Use of free and immobilized laccase for the decontamination of soil polluted with 2,4-dichlorophenol. Abstr. Pap. Am. Chem. Soc. 220, 308-ENVR Part 1.

    Google Scholar 

  • Aiken, B.S. and Logan, B.E. (1996). Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulfonate media. Biodegradation 7, 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Aktas, N., Cicek, H., Unal, A.T., Kibarer, G., Kolankaya, N., and Tanyolac, A. (2001). Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Biores. Technol. 80, 29–36.

    Article  CAS  Google Scholar 

  • Alexandre, G. and Bally, R. (1999). Emergence of laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol. Lett. 174, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Ali, T.A. and Wainwright, A.M. (1994). Growth of Phanerochaete chrysosporium in soil and its ability to degrade the fungicide benomyl. Biores. Technol. 49, 197–201.

    Article  CAS  Google Scholar 

  • Alleman, B.C., Logan, B.E., and Gilbertson, R.L. (1995). Degradation of pentachlorophenol by fixed films of white-rot fungi in rotating tube bioreactors. Water Res. 29, 61–67.

    Article  CAS  Google Scholar 

  • Altamirano, M.M., Blackburn, J.M., Aguayo, C., and Fersht, A.R. (2000). Directed evolution of new catalytic activity using α/β-barrel scaffold. Nature 403, 617–622.

    Article  PubMed  CAS  Google Scholar 

  • Amitai, G., Adani, R., Sod-Moriah, G., Rabinovitz, I., Vincze, A., Leader, H., Chefetz, B., Leibovitz-Persky et al. (1998). Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett. 438, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Ander, P. and Eriksson, K.-E.L. (1976). The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Arch. Microbiol. 109, 1–8.

    Article  CAS  Google Scholar 

  • Anderson, S.O. (1985). Sclerotization and tanning in cutide. In G.A. Kerkut and L.I. Gillert (eds.) Comparative insect physiology, biochemistry, and pharmacology (Vol. 3). Pergamin Press, Oxford, pp. 59–64.

    Google Scholar 

  • Antorini, M., Herpoel-Gimpert, I., Choinowski, T., Sigoillot, J.C., Aster, M., Winterhalter, K., and Piontek, K. (2002). Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochim. Biophys. Acta 1594, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • April, T.M., Foght, J.M., and Currah, R.S. (2000). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can. J. Microbiol. 46, 38–49.

    Article  PubMed  CAS  Google Scholar 

  • Archer, D.B. (2000). Filamentous fungi as microbial cell factories for food use. Curr. Opin. Biotechnol. 11, 478–483.

    Article  PubMed  CAS  Google Scholar 

  • Armengaud, J. and Timmis, K.N. (1997). Biodegradation of dibenzofuran-p-dioxin and dibenzofuran by bacteria. J. Microbiol. 35, 241–252.

    Google Scholar 

  • Arnold, F.H. and Volkov, A.A. (1999). Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, M.F. and Frea, J.I. (1989). 2,3,7,8-Tetrachlorodibenzo-p-dioxin: Aspects of its important properties and its potential biodegradation in soils. J. Environ. Qual. 18, 1–11.

    Article  CAS  Google Scholar 

  • Atlas, R.M. (1984). Petroleum microbiology. Macmillan Publ. Co., New York.

    Google Scholar 

  • Atanassov, P. (2002). Laccase-catalyzed direct electron transfer: Application in bio-fuel cell cathode. Abstr. Pap. Am. Chem. Soc. 223, 378-COLL Part 1.

    Google Scholar 

  • Balakshin, M., Capanema, E., Chen, C.L., Gratzl, J., Kirkman, A., and Gracz, H. (2001). Biobleaching of pulp with dioxygen in the laccase-mediator system—reaction mechanisms for degradation of residual lignin. J. Mol. Catal. B—Enzym. 13, 1–16.

    Article  CAS  Google Scholar 

  • Baldrian, P. and Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 206, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Ballerstedt, H., Kraus, A., and Lechner, U. (1997). Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale river sediment. Environ. Sci. Technol. 31, 1749–1753.

    Article  CAS  Google Scholar 

  • Banat, I.M., Nigam, P., Singh, D., and Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: A review. Biores. Technol. 58, 217–227.

    Article  CAS  Google Scholar 

  • Barensi, R.I., Chellegatti, M.A.D.C., Fonseca, M.J.V., and Said, S. (2001). Partial purification and characterization of exopolygalacturonase II and III of Penicillium frequentans. Braz. J. Microbiol. 31, 327–330.

    Article  Google Scholar 

  • Barrientos, L., Scott, J.J., and Murthy, P.P.N. (1994). Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol. 106, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  • Barton, S.C., Kim, H.H., Binyamin, G., Zhang, Y.C., and Heller, A. (2001). Electroreduction of O2 to water on the “wired” laccase cathode. J. Phys. Chem. B 105, 11917–11921.

    Article  CAS  Google Scholar 

  • Beaudette, L.A., Davies, S., Fedorak, P.M., Ward, O.P., and Pickard, M.A. (1998). Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white-rot fungi. Appl. Environ. Microbiol. 64, 2020–2025.

    PubMed  CAS  Google Scholar 

  • Beaudette, L.A., Ward, O.P., Pickard, M.A., and Fedorak, P.M. (2000). Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett. Appl. Microbiol. 30, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Beg, Q.K., Kapoor, M., Mahajan, L., and Hoondal, G.S. (2001). Microbial xylanases and their industrial application: A review. Appl. Microbiol. Biotechnol. 56, 326–338.

    Article  PubMed  CAS  Google Scholar 

  • Behnke, U. and Täufel, A. (1994). Peptidases. In H. Ruttloff (ed.) Industrial enzymes (German). Behr’s Verlag, Hamburg, pp. 779–831.

    Google Scholar 

  • Bennet, J.W. (1998). Mycotechnology: The role of fungi in biotechnology. J. Biotechnol. 66, 101–107.

    Article  Google Scholar 

  • Benoit, P., Barriuso, E., and Calvet, R. (1998). Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 37, 1271–1282.

    Article  CAS  Google Scholar 

  • Berka, R.M., Rey, M.W., Brown, K.M., Byun, T., and Klotz, A.V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64, 4423–4427.

    PubMed  CAS  Google Scholar 

  • Berka, R.M., Schneider, P., Golightly, E.J., Brown, S.H., Madden, M., Brown, K.M., Halkier, T., Mondorf, K. et al. (1997). Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme produced in Aspergillus oryzae. Appl. Environ. Microbiol. 63, 3151–3157.

    PubMed  CAS  Google Scholar 

  • Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., and Mougin, C. (2002a). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry 41, 7325–7333.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, T., Jolivalt, C., Caminade, E., Joly, N., Mougin, C., and Briozzo, P. (2002b). Purification and preliminary crystallographic study of Trametes versicolor laccase in its native form. Acta Crystallogr. D — Biol. Crystallogr. 58, 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Beurskens, J.E.M., Toussaint, M., de Wolf, J., van der Steen, J.M.D., Lot, P.C., Commandeur, L.C.M., and Parson, J.R. (1995). Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ. Toxicol. Chem. 14, 939–943.

    Article  CAS  Google Scholar 

  • Bezalel, L., Hadar, Y., and Cernigila, C.E. (1996). Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62, 292–295.

    PubMed  CAS  Google Scholar 

  • Bhalerao, U.T., Muralikrishna, C., and Rani, B.R. (1994). Laccase enzyme-catalyzed efficient synthesis of 3-substituted-1,2,4-triazolo(4,3-b)(4,1,2)benzothiadiazine-8-ones. Tetrahedron 50, 4019–4024.

    Article  CAS  Google Scholar 

  • Bhargava, H.N. and Leonard, P.A. (1996). Triclosan: Applications and safety. Am. J. Infect. Control 24, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, M.K. (2000). Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383.

    Article  PubMed  CAS  Google Scholar 

  • Biely, P., Vrsanska, M., Tenkanen, M., and Kluepfel, D. (1997). Endo-β-1,4-xylanase families: Differences in catalytic properties. J. Biotechnol. 57, 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Blakely, J.K., Neher, D.A., and Spongberg, A.L. (2002). Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl. Soil Ecol. 21, 71–88.

    Article  Google Scholar 

  • Bogan, B.W. and Lamar, R.T. (1995). One-electron oxidation in the degradation of creosote polycyclic aromatic-hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 2631–2635.

    PubMed  CAS  Google Scholar 

  • Bogan, B.W. and Lamar, R.T. (1996). Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 62, 1597–1603.

    PubMed  CAS  Google Scholar 

  • Bogan, B.W., Schoenike, B., Lamar, R.T., and Cullen, D. (1996). Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 62, 3697–3703.

    PubMed  CAS  Google Scholar 

  • Bohmer, S., Messner, K., and Srebotnik, E. (1998). Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem. Biophys. Res. Comm. 244, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Bonnen, A.M., Anton, L.H., and Orth, A.B. (1994). Lignin-degrading enzymes of the commercial button mushroom Agaricus bisporus. Appl. Environ. Microbiol. 60, 960–965.

    PubMed  CAS  Google Scholar 

  • Borejsza-Wysocki, W., Lester, C., Attygalle, A.B., and Hrazdina, G. (1999). Elicited cell suspension cultures of apple (Malus X domestica) cv. Liberty produce biphenyl phytoalexins. Phytochemistry 50, 231–235.

    Article  CAS  Google Scholar 

  • Bornscheuer, U.T. (2002). Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Borriss, R. (1987). Biology of enzymes. In H.J. Rehm and G. Reed (eds.) Biotechnology. VCH Verlagsgesellsch, Weinheim, pp. 35–62.

    Google Scholar 

  • Borriss, R. (1994a). β-glucan hydrolyzing enzymes. In H. Ruttloff (ed.) Industrial enzymes (German). Behr’s Verlag, Hamburg, pp. 728–757.

    Google Scholar 

  • Borriss, R. (1994b). Structure and function of the genes encoding for bacterial endo 1,3-1,4-β-glucanases. Curr. Top. Mol. Genet. (Life Sci. Adv.), 163–188.

    Google Scholar 

  • Bourbonnais, R., Paice, M.G., Reid, I.D., Lanthier, P., and Yaguchi, M. (1995). Lignin oxidation by laccase isoenzymes from Trametes versicolor and role of the mediator 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61, 1876–1880.

    PubMed  CAS  Google Scholar 

  • Braun-Lullemann, A., Hüttermann, A., and Majcherczyk, A. (1999). Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 53, 127–132.

    Article  CAS  Google Scholar 

  • Bressler, D.C., Fedorak, P.M., and Pickard, M.A. (2000). Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol. Lett. 22, 1119–1125.

    Article  CAS  Google Scholar 

  • Brinch, D.S. and Pedersen, P.B. (2002). Toxicological studies on Polyporus pinsitus laccase expressed by Aspergillus oryzae intended for use in food. Food Addit. Contam. 19, 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen, H., Dahl-Sorensen, L., and Holm, P.B. (2002). Engineering crop plants: Getting a handle on phosphate. Trends Plant Sci. 7, 118–125.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.A., Zhao, Z.W., and Mauk, A.G. (2002). Expression and characterization of a recombinant multicopper oxidase: Laccase IV from Trametes versicolor. Inorg. Chim. Acta 331, 232–238.

    Article  CAS  Google Scholar 

  • Brul, S. and Coote, P. (1999). Preservative agents in foods—mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Budziszewski, G.J., Croft, K.P.C., and Hildebrand, D.F. (1996). Uses of biotechnology in modifying plant lipids. Lipids 31, 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Bühler, M. and Schindler, J. (1984). Aliphatic hydrocarbons. In K. Kieslich (ed.) Biotransformations (Biotechnology Vol. 6, Series ed. Rehm, H.-J. and Reed, G.). Verlag Chemie, Weinheim, pp. 329–385.

    Google Scholar 

  • Bumpus, J.A. (1989). Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Envrion. Microbiol. 55, 154–158.

    CAS  Google Scholar 

  • Bumpus, J.A. and Aust, S.D. (1987). Biodegradation of chlorinated organic compounds by Phanerochaete chrysosporium a wood rotting fungus. ACS Symp. Ser. 338, 340–349.

    Article  CAS  Google Scholar 

  • Bunge, M., Ballerstedt, H., and Lechner, U. (2001). Regiospecific dechlorination of spiked tetra-and trichlordibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere 43, 675–681.

    Article  PubMed  CAS  Google Scholar 

  • Burke, R.M. and Cairney, J.W.G. (2002). Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi. Mycorrhiza 12, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Buswell, J.A., Cai, Y.J., and Chang, S.T. (1995). Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiol. Lett. 128, 81–87.

    Article  CAS  Google Scholar 

  • Cajal, Y., Svendsen, A., de Bolos, J., Patkar, S.A., and Alsina, M.A. (2000). Effect of the lipid interface on the catalytic activity and spectroscopic properties of a fungal lipase. Biochimie 82, 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, M.D. and Aust, S.D. (1999). Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 367, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Cardenas, F., Alvarez, E., de Castro-Alvarez, M.S., Sanchez-Monteri, J.M., Valmaseda, M., Elson, S.E., and Sinisterra, J.V. (2001a). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol. Catal. B—Enzym. 14, 111–123.

    Article  CAS  Google Scholar 

  • Cardenas, F. de Castro, M.S., Sanchez-Montero, J.M., Sinisterra, J.V., Valmaseda, M., Elson, S.W., and Alvarez, E. (2001b). Novel microbial lipases: Catalytic activity in reactions in organic media. Enzyme Microb. Technol. 28, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Cary, J.W., Brown, R., Cleveland, T.E., Whitehead, M., and Dean, R.A. (1995). Cloning and characterization of a novel polygalacturonase-encoding gene from Aspergillus parasiticus. Gene 153, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Cassland, P. and Jonsson, L.J. (1999). Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl. Microbiol. Biotechnol. 52, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, M.D., Andersson, A., Ander, P., Stenstrom, J., and Torstensson, L. (2001). Establishment of the white rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation systems intended for degradation of pesticides. World J. Microbiol. Biotechnol. 17, 627–633.

    Article  CAS  Google Scholar 

  • Castro-Sowinski, S., Martinez-Drets, G., and Okon, Y. (2002). Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol. Lett. 209, 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia, C.E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4, 331–338.

    Article  CAS  Google Scholar 

  • Cerniglia, C.E. and Crow, S.A. (1981). Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129, 9–13.

    Article  CAS  Google Scholar 

  • Cerniglia, C.E., Freeman, J.P., and Mitchum, R.K. (1982). Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl. Environ. Microbiol. 43, 1070–1075.

    PubMed  CAS  Google Scholar 

  • Cerniglia, C.E., Morgan, J.C., and Gibson, D.T. (1979). Bacterial and fungal oxidation of dibenzofuran. Biochem. J. 180, 175–185.

    PubMed  CAS  Google Scholar 

  • Cerniglia, C.E., Sutherland, J.B., and Crow, S.A. (1992). Fungal metabolism of aromatic hydrocarbons. In G. Winkelmann (ed.) Microbial degradation of natural products. VCH Verlagsgesellschaft, Weinheim, pp. 193–217.

    Google Scholar 

  • Chiu, S.W., Ching, M.L., Fong, K.L., and Moore, D. (1998). Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol. Res. 102, 1553–1562.

    Article  CAS  Google Scholar 

  • Chivukula, M. and Renganathan, V. (1995). Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Environ. Microbiol. 61, 4374–4377.

    PubMed  CAS  Google Scholar 

  • Cho, N.S., Nam, J.H., Park, J.M., Koo, CD., Lee, S.S., Pashenova, N., Ohga, S., and Leonowicz, A. (2001). Transformation of chlorophenols by white-rot fungi and their laccase. Holzforschung 55, 579–584.

    Article  Google Scholar 

  • Cirigliano, M.C. and Carman, G.M. (1985). Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 50, 846–850.

    PubMed  CAS  Google Scholar 

  • Claussen, M. and Schmidt, S. (1998). Biodegradation of phenol and p-cresol by the hyphomycete Scedosporium apiospermum. Res. Microbiol. 149, 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Cliffe, S., Fawer, M.S., Maier, G., Takata, K., and Ritter, G. (1994). Enzyme assays for the phenolic content of natural juices. J. Agric. Food Chem. 42, 1824–1828.

    Article  CAS  Google Scholar 

  • Cocchietto, M., Skert, N., Nimis, P.L., and Sava, G. (2002). A review on usnic acid, an interesting natural compound. Naturwissenschaften 89, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M.S. and Gabriele, P.D. (1982). Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44, 23–27.

    PubMed  CAS  Google Scholar 

  • Collett, O. (1992). Aromatic-compounds as growth substrates for isolates of the brown-rot fungus Lentinus lepideus (Fr ex Fr.). Fr. Mater. Organismen 27, 67–77.

    CAS  Google Scholar 

  • Collins, B.M., McLachlan, J.A., and Arnold, S.F. (1997). The estrogenic and antiestrogenic activities of phytochemicals with human estrogen receptor expressed in yeast. Steroids 62, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Collins, P.J. and Dobson, A.D.W. (1997). Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63, 3444–3450.

    PubMed  CAS  Google Scholar 

  • Collins, P.J., Kotterman, M.J.J., Field, J.A., and Dobson, A.D.W. (1996). Oxidation of anthracene and benzo[a]pyrene by laccase from Trametes versicolor. Appl. Environ. Microbiol. 62, 4563–4567.

    PubMed  CAS  Google Scholar 

  • Conesa, A., Punt, P.J., and van den Hondel, C.A.M.J.J. (2002). Fungal peroxidases: Molecular aspects and applications. J. Biotechnol. 93, 143–158.

    Article  PubMed  CAS  Google Scholar 

  • Conneely, A., Smyth, W.F., and McMullan, G. (2002). Study of the white-rot fungal degradation of selected pthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal. Chim. Acta 451, 259–270.

    Article  CAS  Google Scholar 

  • Cortes, D., Barrios-Gonzales, J., and Tomasini, A. (2002). Pentachlorophenol tolerance and removal by Rhizopus nigricans in solid-state culture. Process Biochem. 37, 881–884.

    Article  CAS  Google Scholar 

  • Cortez, D.A.G., Young, M.C.M., Marston, A., Wolfender, J.L., and Hostettmann, K. (1998). Xanthones, triterpenes and a biphenyl from Kielmeyera coriacea. Phytochemistry 47, 1367–1374.

    Article  CAS  Google Scholar 

  • Coughlan, M.P. (1985). The properties of fungal and bacterial cellulases with comment on their production and application, Biotechnol. Genet. Eng. 3. In G.E. Russell (ed.) Biotechnology and genetic engineering Intercept, Newcastle Upon Tyne, pp. 39–109.

    Google Scholar 

  • Cox, J.C. and Golbeck, J.H. (1985). Hydroxylation of biphenyl by Aspergillus parasiticus: Approaches to yield improvement in fermentor cultures. Biotechnol. Bioeng. 27, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, S.M. and Eaton, R.A. (1997). Evaluation of creosote fortified with synthetic pyrethroids as wood preservatives for use in the sea. II. Effects on wood-degrading micro-organisms and fouling invertebrates. Mater. Organismen 31, 197–216.

    CAS  Google Scholar 

  • Creffield, J.W., Greaves, H., Chew, N., and Nguyen, N.K. (2000). A field trial of pigment-emulsion creosote: 11 year data. Forest Prod. J. 50, 77–82.

    CAS  Google Scholar 

  • Cui, W., Beever, R.E., Parkes, S.L., Weeds, P.L., and Templeton, M.D. (2002). An osmosensing histidine kinase mediators dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet. Biol. 36, 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, D. (1997). Recent advances on the molecular genetics of ligninolytic fungi. J. Biotechnol. 53, 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Dalboge, H. (1997). Expression cloning of fungal enzyme genes; a novel approach for efficient isolation of enzyme genes of industrial interest. FEMS Microbiol. Rev. 21, 29–42.

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale, A., Celetti, D., Felici, M., DiMattia, E., and Sermanni, G.G. (1996). Substrate specificity of laccase from Lentinus edodes. Acta Biotechnol. 16, 257–270.

    Article  Google Scholar 

  • D’Annibale, A., Stazi, S.R., Vinciguerra, V., DiMattia, E., and Sermanni, G.G. (1999). Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem. 34, 697–706.

    Article  Google Scholar 

  • Das, N., Chakraborty, T.K., and Mukherjee, M. (2001). Purification and characterization of a growth-regulating laccase from Pleurotus florida. J. Basic Microbiol. 41, 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Datta, A., Bettermann, A., and Kirk, T.K. (1991). Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl. Environ. Microbiol. 57, 1453–1460.

    PubMed  CAS  Google Scholar 

  • Datta, J., Dutta, T.K., and Samanta, T.B. (1994). Microsomal glutathione-S-transferase (GST) isoenzymes in Aspergillus ochraceus TS—induction by 3-methylcholanthrene. Biochem. Biophys. Res. Commun. 203, 1508–1514.

    Article  PubMed  CAS  Google Scholar 

  • Davila, A.M., Marchai., R., and Vandecasteele, J.P. (1994). Sophorose lipid production from lipidie precursors— predictive evaluation of industrial substrates. J. Ind. Microbiol. 13, 249–257.

    Article  CAS  Google Scholar 

  • Davies, G. and Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Davies, G.J., Wilson, K.S., and Henrissat, B. (2002). Nomenclature for sugar binding subsites in glycosyl hydrolases. Biochem. J. 321, 557–559.

    Google Scholar 

  • Davis, M.W., Glaser, J.A., Evans, J.W., and Lamar, R.T. (1993). Field-evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ. Sci. Technol. 27, 2572–2576.

    Article  CAS  Google Scholar 

  • Dec, J., Haider, K., and Bollag, J.M. (2001). Decarboxylation and demethoxylation of naturally occuring phenols during coupling reactions and polymerization. Soil Sci. 166, 660–671.

    Article  CAS  Google Scholar 

  • Dedeyan, B., Klonowska, A., Tagger, S., Tron, T., Iacazio, G., Gil, G., and Le Petit, J. (2000). Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl. Environ. Microbiol. 66, 925–929.

    Article  PubMed  CAS  Google Scholar 

  • de Groot, R.C. and Woodward, B. (1998). Wolfiporia cocos—a potential agent for composting or bioprocessing Douglas-fir wood treated with copper-based preservatives. Mater. Organismen 32, 195–215.

    Google Scholar 

  • de Groot, R.C. and Woodward, B. (1999). Using copper-tolerant fungi to biodegrade wood treated with copperbased preservatives. Int. Biodeter. Biodegr. 44, 17–27.

    Article  Google Scholar 

  • Dekker, J. (1995). Development of resistance to modern fungicide and strategies for its avoidance. In H. Lyr (ed.) Modern selective fungicides (2nd edn.). Fischer, Jena, pp. 23–38.

    Google Scholar 

  • Dekker, J. and Georgopoulos, S.G. (eds.) (1982). Fungicide resistance in crop protection. Pudoc, Wageningen.

    Google Scholar 

  • Dekker, R.F.H., Vasconcelos, A.F.D., Barbosa, A.M., Giese, E.C., and Paccola-Meirelles, L. (2001). A new role for veratryl alcohol: Regulation of synthesis of lignocellulose-degrading enzymes in the ligninolytic ascomycetous fungus, Botryosphaeria sp.; influence of carbon source. Biotechnol. Lett. 23, 1987–1993.

    Article  CAS  Google Scholar 

  • del Sorbo, G., Schoonbeek, H., and de Waard, M.A. (2000). Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet. Biol. 30, 1–15.

    Article  PubMed  Google Scholar 

  • de Marco, A. and RoubelakisAngelakis, K.A. (1997). Laccase activity could contribute to cell-wall reconstitution in regeneration protoplasts. Phytochemistry 46, 421–425.

    Article  Google Scholar 

  • Demain, A.L. (2000). Microbial biotechnology. Trends Biotechnol. 18, 26–31.

    Article  PubMed  CAS  Google Scholar 

  • de Vries, R.P. and Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522.

    Article  PubMed  Google Scholar 

  • Dietrich, D., Hickey, W.J., and Lamar, R. (1995). Degradation of 4,4′-dichlorobiphenyl, 3,3′,4,4′-tetrachloro-biphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 3904–3909.

    PubMed  CAS  Google Scholar 

  • Dixon, D.P., Cole, D.J., and Edwards, R. (2000). Characterisation of a zeta class gluthatione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384, 407–412.

    Article  PubMed  CAS  Google Scholar 

  • Dmochewitz, S. and Ballschmiter, K. (1988). Microbial transformation of technical mixtures of polychlorinated biphenyls (PCB) by the fungus Aspergillus niger. Chemosphere 17, 111–121.

    Article  CAS  Google Scholar 

  • Dodge, R.H., Cerniglia, C.E., and Gibson, D.T. (1979). Fungal metabolism of biphenyl. Biochem. J. 178, 223–230.

    PubMed  CAS  Google Scholar 

  • Donnelly, P.K. and Fletcher, J.S. (1994). Potential use of mycorrhizal fungi as bioremediation agents. ACS Symp. Ser. 563, 93–99.

    Article  CAS  Google Scholar 

  • Donnelly, P.K., Entry, J.A., and Crawford, D.L. (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at 3 nitrogen concentrations in-vitro. Appl. Environ. Microbiol. 59, 2642–2647.

    PubMed  CAS  Google Scholar 

  • Dordick, J.S., Ryu, K., and McEldoon, J.P (1991). Enzymatic cytalysis on coal-related compounds in organic media—kinetics and potential commercial applications. Res. Conserv. Recycl. 5, 195–209.

    Article  Google Scholar 

  • Ducros, V., Davies, G.J., Lawson, D.M., Wilson, K.S., Brwon, S.H., Ostergaard, P., Pedersen, A.H., Schneider, P. et al. (1997). Crystallization and preliminary X-ray analysis of the laccase from Coprinus cinereus. Acta Crystallogr. D — Biol. Crystallogr. 53, 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, C.G. and Deverall, F.J. (1964). Degradation of wood preservatives by fungi. Appl. Microbiol. 12, 57–68.

    PubMed  CAS  Google Scholar 

  • Duran, N. and Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B — Environ. 28, 83–99.

    Article  CAS  Google Scholar 

  • Dvorakova, J. (1998). Phytase: Source, preparation and exploitation. Folia Microbiol. 43, 323–338.

    Article  CAS  Google Scholar 

  • Eaton, D.C. (1985). Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium, a ligninolytic fungus. Enzyme Microb. Technol. 7, 194–196.

    CAS  Google Scholar 

  • Eggen, T. (1999). Application of fungal substrate from commercial mushroom production—Pleurotus ostreatus—for bioremediation of creosote contamined soil. Int. Biodeter. Biodegr. 44, 117–126.

    Article  CAS  Google Scholar 

  • Eggen, T. and Sveum, P. (1999). Decontamination of aged creosote polluted soil: The influence of temperature, white rot fungus Pleurotus ostreatus, and pretreatment. Int. Biodeter. Biodegr. 43, 125–133.

    Article  CAS  Google Scholar 

  • Eggert, C., Lafayette, PR., Temp, U., Eriksson, K.-E.L., and Dean, J.ED. (1998). Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 64, 1766–1772.

    PubMed  CAS  Google Scholar 

  • Eggert, C., Temp, U., and Eriksson, K.-E.L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151–1158.

    PubMed  CAS  Google Scholar 

  • Eggert, C., Temp, U., and Eriksson, K.-E.L. (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 407, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Elisashvili, V.I. (1993). Physiological regulation of ligninolytic activity in higher basidium fungi. Microbiology 62, 480–487.

    Google Scholar 

  • Emtiazi, G., Satarii, M., and Mazaherion, F. (2001). The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Water Res. 35, 1219–1224.

    Article  PubMed  CAS  Google Scholar 

  • Endo, K., Hosono, K., Beppu, T., and Ueda, K. (2002). A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis. Microbiology 148, 1767–1776.

    PubMed  CAS  Google Scholar 

  • Entry, J.A., Donnelly, P.K., and Emmingham, W.H. (1996). Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darken. Appl. Soil Ecol. 3, 85–90.

    Article  Google Scholar 

  • Fabbrini, M., Galli, C., and Gentili, P. (2002). Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal. B— Enzym. 16, 231–240.

    Article  CAS  Google Scholar 

  • Fahr, K., Wetzstein, H.G., Grey, R., and Schlosser, D. (1999). Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol. Lett. 175, 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Fahreus, G. and Ljundgreen, H. (1961). Substrate specificity of purified fungal laccase. Biochim. Biophys. Acta 46, 22–32.

    Article  Google Scholar 

  • Fakoussa, R.M. and Frost, P.J. (1999). In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 52, 60–65.

    Article  CAS  Google Scholar 

  • Fakoussa, R.M. and Hofrichter, M. (1999). Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52, 25–4

    Article  PubMed  CAS  Google Scholar 

  • Farnet, A.M., Tagger, S., and Le Petit, J. (1999). Effects of copper and aromatic inducers on the laccases of the white-rot fungus Marasmius quercophilus. CR Acad. Sci. III-VIE 322, 499–503.

    Google Scholar 

  • Faure, D., Bouillant, M.L., and Bally, R. (1995). Comparative-study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia-oryzae laccases. Appl. Environ. Microbiol. 61, 1144–1146.

    PubMed  CAS  Google Scholar 

  • Faure, D., Bouillant, M.L., Jacoud, C., and Bally, R. (1996). Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry 42, 357–359.

    Article  CAS  Google Scholar 

  • Fernandez-Sanchez, J.M., Rodriguez-Vazquez, R., Ruiz-Aguilar, G., and Alvarez, P.J.J. (2001). PCB biodegradation in aged contaminated soil: Interactions between exogenous Phanerochaete chrysosporium and indigenous microorganisms. J. Environ. Sci. Health 36, 1145–1162.

    CAS  Google Scholar 

  • Field, J.A., de Jong, E., Costa, G.F., and de Bont, J.A.M. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58, 2219–2226.

    PubMed  CAS  Google Scholar 

  • Font, X., Caminal, G., Gabarrell, X., Lafuente, J., and Vicent, M.T. (1997). One-line enzyme activity determination using the stopped-flow technique: Application to laccase activity in pulp mill waste-water treatment. Appl. Microbiol. Biotechnol. 48, 168–173.

    Article  CAS  Google Scholar 

  • Fortnagel, P., Harms, H., Wittich, R.-M., Krohn, S., Meyer, H., and Francke, W. (1989). Cleavage of dibenzofuran and dibenzo-p-dioxin ring systems by a Pseudomonas bacterium. Naturwissenschaften 76, 222–223.

    Article  PubMed  CAS  Google Scholar 

  • Freire, R.S., Duran, N., and Kubota, L.T. (2002a). Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft El paper mill effluent. Anal. Chim. Acta 463, 229–238.

    Article  CAS  Google Scholar 

  • Freire, R.S., Duran, N., Wang, J., and Kubota, L.T. (2002b). Laccase-based screen printed electrode for amperometric detection of phenolic compounds. Anal. Lett. 35, 29–38.

    Article  CAS  Google Scholar 

  • Fritz-Langhals, E. and Kunath, B. (1998). Synthesis of aromatic aldehydes by laccase-mediator assisted oxidation. Tetrahedron Lett. 39, 5955–5956.

    Article  CAS  Google Scholar 

  • Frost, G.M. and Moss, D.A. (1987). Production of enzymes by fermentation. In J.F. Kennedy (ed.) Enzyme technology. VCH, Weinheim, pp. 65–211.

    Google Scholar 

  • Fu, Y.Z. and Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters: A review. Biores. Technol. 79, 252–262.

    Article  Google Scholar 

  • Fujisawa, T., Onogawa, Y., Sato, A., Mitsuya, T., and Shimuzu, M. (1998). Asymmetric reductions of (trifluoroacetyl)biphenyl derivatives with bakers’ yeast and with Geotrichum candium acetone powder. Tetrahedron 54, 4267–4276.

    Article  CAS  Google Scholar 

  • Fukui, S. and Tanaka, A. (1981). Production of useful compounds from alkane media in Japan. In A. Fiechter (ed.) Products from alkanes, cellulose and other feedstocks. Akademie-Verlag, Berlin, pp. 1–35.

    Google Scholar 

  • Gaal, A. and Neujahr, H.Y. (1979). Metabolism of phenol and resorcinol in Trichosporon cutaneum. J. Bacteriol. 137, 13–21.

    PubMed  CAS  Google Scholar 

  • Galante, Y.M., de Conti, A., and Montevedi, R. (1998). Application of Trichoderma enzymes in food and feed industries. In G.E. Hamnn and C. Kubicek (eds.) Trichoderma and Gliocladiumenzymes, biological control and commercial applications. Taylor & Francis, London, pp. 327–342.

    Google Scholar 

  • Galhaup, C., Goller, S., Peterbauer, C.K., Strauss, J., and Haltrich, D. (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148, 2159–2169.

    PubMed  CAS  Google Scholar 

  • Gardiol, A.E., Hernandez, R.J., Reinhammer, B., and Harte, B.R. (1996). Development of a gas-phase oxygen biosensor using a blue copper-containing oxidase. Enzyme Microb. Technol. 18, 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Garg, S.K. and Modi, D.R. (1999). Decolorization of pulp-paper mill effluents by white-rot fungi. Crit. Rev. Biotechnol. 19, 85–112.

    Article  CAS  Google Scholar 

  • Gavnholt, B., Larsen, K., and Rasmussen, S.K. (2002). Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci. 162, 873–8

    Article  CAS  Google Scholar 

  • Georgopoulos, S.G. (1995). The genetics of fungicide resistance. In H. Lyr (ed.) Modern selective fungicides (2nd edn). Fischer, Jena, pp. 39–52.

    Google Scholar 

  • Gesell, M. (2001). Biotransformation von Biarylverbindungen durch Pilze der Gattungen Paecilomyces und Fusarium unter besonderer Berücksichtigung des Stammes Paecilomyces lilacinus. Doctoral dissertation, University of Greifswald.

    Google Scholar 

  • Gesell, M., Hammer, E., Specht, M., Francke, W., and Schauer, F. (2001). Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl. Environ. Microbiol. 67, 1551–1557.

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13, 122–135.

    Article  PubMed  CAS  Google Scholar 

  • Ghindilis, A.L., Gavrilova, V.P., and Yaropolov, A.I. (1992). Laccase-based biosensor for determination of polyphenols—determination of catechols in tea. Biosens. Bioelectron. 7, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Giardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., Cennamo, G., and Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem. J. 341, 655–663.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, D.T. (1968). Microbial degradation of aromatic compounds. Science 161, 1093–1097.

    Article  CAS  Google Scholar 

  • Gill, M. and Steglich, W. (1987). Progress in the chemistry of organic natural products 51. Springer-Verlag, Wien.

    Book  Google Scholar 

  • Glenn, J.K., Akileswaran, L., and Gold, M.H. (1986). Mn (II) oxidation in the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysopsorium. Arch. Biochem. Biophys. 251, 688–696.

    Article  PubMed  CAS  Google Scholar 

  • Gokmen, V., Borneman, Z., and Nijhuis, H.H. (1998). Improved ultrafiltration for color reduction and stabilization of apple juice. J. Food Sci. 63, 504–507.

    Article  CAS  Google Scholar 

  • Golbeck, J.H., Albaugh, S.A., and Radmer, R. (1983). Metabolism of biphenyl by Aspergillus toxicarius: Induction of hydroxylating activity and accumulation of water-soluble conjugates. J. Bacteriol. 156, 49–57.

    PubMed  CAS  Google Scholar 

  • Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W. et al. (2001). Pigs expressing salivary phytase produce low-phosphorous manure. Nat. Biotechnol. 19, 741–745.

    Article  PubMed  CAS  Google Scholar 

  • Golovleva, L.A., Leontievsky, A.A., Maltseva, O.V., and Myasoedova, N.M. (1993). Ligninolytic enzymes of the fungus Panus tigrinus 8/18—biosynthesis, purification and properties. J. Biotechnol. 30, 71–77.

    Article  CAS  Google Scholar 

  • Gouka, R.J., Gerk, C., Hooykaas, P.J.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J.A. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 6, 598–601.

    Article  CAS  Google Scholar 

  • Gramss, G., Kirsche, B., Voigt, K.D., Günther, T., and Fritsche, W. (1999). Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol. Res. 103, 1009–1018.

    Article  CAS  Google Scholar 

  • Grass, G. and Rensing, C. (2001). CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286, 902–908.

    Article  PubMed  CAS  Google Scholar 

  • Grassin, C. and Fauquembergue, P. (1996). Fruit juices. In S. West (ed.) Industrial enzymology. Macmillan Press, London, pp. 226–240.

    Google Scholar 

  • Green, N.A., Meharg, A.A., Till, C., Troke, J., and Nicholson, J.K. (1999). Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by F-19 nuclear magnetic resonance spectroscopy and 14C radiolabelling analysis. Appl. Environ. Microbiol. 65, 4021–4027.

    PubMed  CAS  Google Scholar 

  • Gripenberg, J. (1960). Fungus pigments 12. The structure and synthesis of telephone acid. Tetrahedron 10, 135–143.

    Article  CAS  Google Scholar 

  • Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W., and Kratky, C. (1998). Thermophilic xylanase fom Thermomyces lanuginosus: High resolution X-ray structure and modeling studies. Biochemistry 37, 13475–13485.

    Article  PubMed  CAS  Google Scholar 

  • Günther, T., Sack, U., Hofrichter, M., and Latz, M. (1998). Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J. Basic Microbiol. 38, 113–122.

    Article  Google Scholar 

  • Ha, H.C., Honda, Y., Watanabe, T., and Kuwahara, M. (2001). Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl. Environ. Microbiol. 55, 704–711.

    CAS  Google Scholar 

  • Haemmerli, S.D., Leisola, M.S.A., Sanglard, D., and Fiechter, A. (1986). Oxidation of benzo[a]pyrene by extracellular ligninase of Phanerochaete chrysosporium. J. Biol. Chem. 261, 6900–6903.

    PubMed  CAS  Google Scholar 

  • Hakala, T., Lundell, T., Hofrichter, M., and Maijala, P. (2002). Manganese peroxidase—the key enzyme in lignin biodegradation and biopulping by white-rot fungi? Abstr. Pap. Am. Chem. Soc. 223, 028-CELL Part1.

    Google Scholar 

  • Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., and Rouvinen, J. (2002). Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat. Struct. Biol. 9, 601–605.

    PubMed  CAS  Google Scholar 

  • Halsall, B.E., Darrah, J.A., and Cain, R.B. (1969). Regulation of enzymes of aromatic-ring fission in fungi— organisms using both catechol and protocatechuate pathways. Biochem. J. 114, P75.

    Google Scholar 

  • Hammel, K.E. and Tardone, P.J. (1988). The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27, 6563–6568.

    Article  CAS  Google Scholar 

  • Hammel, K.E., Kalyanaraman, B., and Kirk, T.K. (1986). Oxidation of polycyclic aromatic hydrocarbons and dibenzo-p-dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 262, 16948–16952.

    Google Scholar 

  • Hammer, E., Krowas, D., Schäfer, A., Specht, M., Francke, W., and Schauer, F. (1998). Isolation and characterization of a dibenzofuran-degrading yeast: Identification of oxidation and ring cleavage products. Appl. Environ. Microbiol. 64, 2215–2219.

    PubMed  CAS  Google Scholar 

  • Hammer, E. and Schauer, F. (1997). Fungal hydroxylation of dibenzofuran. Mycol. Res. 101, 433–436.

    Article  CAS  Google Scholar 

  • Hammer, E., Schoefer, L., Schäfer, A., Hundt, K., and Schauer, F. (2001). Formation of glucoside conjugates during biotransformation of dibenzofuran by Penicillium canescens SBUG-M 1139. Appl. Microbiol. Biotechnol. 57, 390–394.

    Article  PubMed  CAS  Google Scholar 

  • Han, S. and New, P.B. (1994). Effect of water availability on degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by soil-microorganisms. Soil Biol. Biochem. 26, 1689–1697.

    Article  CAS  Google Scholar 

  • Hara, A., Ueda, M., Matsui, T., Arie, M., Saeki, H., Matsuda, H., Furuhashi, K., Kanai, T., et al. (2001). Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determination of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis. Appl. Microbiol. Biotechnol. 56, 478–485.

    Article  PubMed  CAS  Google Scholar 

  • Harada, T. (1984). Isoamylase and its industrial significance in the production of sugars from starch, Biotechnol. Genet. Eng. 1. In G.E. Russel (ed.) Biotechnology and genetic engineering reviews Intercept, Newcastle Upon Tyne, pp. 39–63.

    Google Scholar 

  • Hargreaves, J., Park, J.O., Ghisalberti, EX., Sivasithamparam, K., Skelton, B.W., and White, A.H. (2002). New chlorinated diphenyl ethers from Aspergillus species. J. Nat. Prod. 65, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Harkki, A., Uusitalo, J., Bailey, M., Penttila, M., and Knowles, J.K.C. (1989). A novel fungal expression system: Secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio-Technology 7, 596–603.

    CAS  Google Scholar 

  • Harris, G. and Ricketts, R.W. (1962). Metabolism of phenolic compounds by yeast. Nature 195, 473–474.

    Article  CAS  Google Scholar 

  • Harwood, C.S. and Parales, R.E. (1996). The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553–590.

    Article  PubMed  CAS  Google Scholar 

  • Hatakka, A. (1994). Lignin-modifying enzymes from selected white-rot fungi—production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125–135.

    Article  CAS  Google Scholar 

  • Heldt-Hansen, H.P. (1997). Development of enzymes for food application. In K. Poutanen (ed.) Biotechnology in the food chain. New tools and applications for future foods Technical Research Centre of Finland, Espoo, Symposium 1998, Helsinki, pp. 45–55.

    Google Scholar 

  • Henning, K. (1993). Oxidation of diphenyl ether by the yeast Trichosporon beigelii (German). Doctoral dissertation, University of Greifswald.

    Google Scholar 

  • Henriksson, G., Johansson, G., and Petterson, G. (2000). A critical review of cellobiose dehydrogenases. J. Biotechnol. 78, 93–113.

    Article  PubMed  CAS  Google Scholar 

  • Hess, J., Leitner, C., Galhaup, C., Kulbe, K.D., Hinterstoisser, B., Steinwender, M., and Haltrich, D. (2002). Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor. Appl. Biochem. Biotechnol. 98, 229–241.

    Article  PubMed  Google Scholar 

  • Hiratsuka, N., Wariishi, H., and Tanaka, H. (2001). Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol. 57, 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, B. and Rehm, H.J. (1976). Degradation of long chain n-alkanes by Mucorales. Eur. J. Appl. Micobiol. 3, 19–30.

    Article  CAS  Google Scholar 

  • Hofmann, K.H. and Schauer, F. (1988). Utilization of phenol by hydrocarbon assimilating yeasts. Antonie van Leeuwenhoek 54, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter, M., Bublitz, F., and Fritsche, W. (1997). Fungal attack on coal II. Solubilization of low-rank coal by filamentous fungi. Fuel Proc. Technol. 52, 55–64.

    Article  CAS  Google Scholar 

  • Hofrichter, M. and Scheibner, K. (1993). Utilization of aromatic compounds by the Penicillium strain BI-7/2. J. Basic Microbiol. 33, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter, M., Scheibner, K., Schneegass, I., and Fritsche, W. (1998). Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol. 64, 399–404.

    PubMed  CAS  Google Scholar 

  • Holker, U., Schmiers, H., Grosse, S., Winkelhofer, M., Polsakiewicz, M., Ludwig, S., Dohse, J., and Hofer, M. (2002). Solubilization of low-rank coal by Trichoderma atroviride: Evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J. Ind. Microbiol. Biotechnol. 28, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Hommel, R., Stüwer, O., Stuber, W., Haferburg, D., and Kleber, H.-P. (1987). Production of water soluble surface-active exolipids by Torulopsis apicola. Appl. Microbiol. Biotechnol. 26, 199–205.

    Article  CAS  Google Scholar 

  • Hong, F., Meinander, N.Q., and Jonsson, L.J. (2002). Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E.E. (2002). From green plants to industrial enzymes. Enzyme Microb. Technol. 30, 279–283.

    Article  CAS  Google Scholar 

  • Hoshida, H., Nakao, M., Kanazawa, H., Kubo, K., Hakukawa, K., Morimasa, K., Akada, R., and Nishizawa, Y. (2001). Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J. Biosci. Bioeng. 92, 372–380.

    PubMed  CAS  Google Scholar 

  • Hrazdina, G., Borejsza-Wysocki, W., and Lester, C. (1997). Phytoalexin production in an apple cultivar resistant to Venturia inaequalis. Phytopathology 87, 868–876.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M.H., Shih, Y.P, and Liu, S.M. (2002). Biodegradation of polyvinyl alcohol by Phanerochaete chrysosporium after pretreatment with Fenton’s reagent. J. Environ. Sci. Health A — Toxic/Hazardous Substances Environ. Eng. 37, 29–41.

    Article  Google Scholar 

  • Huber, J. (1994). Production of microbial enzyme preparations: Biology and biochemistry. In H. Ruttloff (ed.) Industrial enzymes (German). Behr’s Verlag, Hamburg, pp. 193–244.

    Google Scholar 

  • Hullo, M.F., Moszer, I., Danchin, A., and Martin-Verstraete, I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183, 5426–5430.

    Article  PubMed  CAS  Google Scholar 

  • Humar, M., Petric, M., Pohleven, F., Sentjurc, M., and Kalan, P. (2002). Changes in EPR spectra of wood impregnated with copper-based preservatives during exposure to several wood-rotting fungi. Holzforschung 56, 229–238.

    Article  CAS  Google Scholar 

  • Hundt, K.F. (2001). Biotransformation von halogenierten Diphenylethern durch Pilze unter besonderer Berücksichtigung von Trametes versicolor. Doctoral dissertation, University of Greifswald.

    Google Scholar 

  • Hundt, K., Jonas, U., Hammer, E., and Schauer, F. (1999). Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation 10, 279–286.

    Article  CAS  Google Scholar 

  • Hundt, K., Martin, D., Hammer, E., Jonas, U., Kindermann, M.K., and Schauer, F. (2000). Transformation of Triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 66, 4157–4160.

    Article  PubMed  CAS  Google Scholar 

  • Hutzinger, O. and Blumich, M.J. (1985). Sources and fate of PCDDs and PCDFs: An overview. Chemosphere 14, 581–600.

    Article  CAS  Google Scholar 

  • Ichinose, H., Wariishi, H., and Tanaka, H. (1999). Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol. Progr. 15, 706–714.

    Article  CAS  Google Scholar 

  • Idriss, E.E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., and Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth promoting effect. Microbiology 148, 2097–2109.

    PubMed  CAS  Google Scholar 

  • Iida, M., Kobayashi, H., and Iizuka, H. (1980). Cellular fatty acids derived from normal alkanes by Candida rugosa. Z. Allg. Mikrobiol. 20, 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, R., Sugita, T., Jacobson, E.S., and Shinoda, T. (2002). Laccase and melanization in clinically important Cryptococcus species other than Cryptococcus neoformans. J. Clin. Microbiol. 40, 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  • Inomata, N., Yosgida, H., Aoki, A., Tsunoda, M., and Yamamoto, M. (1991). Effects of MCPA and other phenoxyacid compounds on hepatic xenobiotic metabolism in rats. Tohoku J. Exp. Med. 165, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S. and Itoh, S. (1982). Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol. Lett. 4, 3–8.

    Article  CAS  Google Scholar 

  • Irvin, G.C.J. and Cosgrove, D.J.J. (1972). Inositol phosphate phosphatases of microbiological origin: The inositol pentaphosphate products of Aspergillus ficuum phytases. J. Bacteriol. 112, 434–438.

    Google Scholar 

  • Ishiguro, T., Ohtake, Y., Nakayama, S., Inamori, Y., Amagai, T., Soma, M., and Matsusita, H. (2000). Biodegradation of dibenzofuran and dioxins by Pseudomonas aeruginosa and Xanthomonas maltophilia. Environ. Technol. 21, 1309–1316.

    CAS  Google Scholar 

  • Ito, K., Ikemasu, T., and Ishikawa, T. (1992). Cloning and sequencing of the xynA-gene encoding xylanase A of Aspergillus kawachii. Biosci. Biotechnol. Biochem. 56, 906–912.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki, M., Niki, E., and Kato, S. (1993). Antioxidant activities of natural and synthetic carbazoles. Biofactors 4, 123–128.

    PubMed  CAS  Google Scholar 

  • Jaeger, K.E. and Eggert, T. (2002). Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, K.-E. and Reetz, M. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396–403.

    Article  PubMed  CAS  Google Scholar 

  • Jin, L.Z., Tran, D.Q., Ide, C.F., McLachlan, J.A., and Arnold, S.F. (1997). Several synthetic chemicals inhibit progesterone receptor-mediated transactivation in yeast. Biochem. Biophys. Res. Commun. 233, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, C. and Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524–528.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, C., Majcherczyk, A., and Hüttermann, A. (1998). Oxidation of acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotechnol. 61, 151–156.

    Article  CAS  Google Scholar 

  • Jonas, U. (1997). Biotransformation von Biarylverbindungen durch Weißfäulepilze unter besonderer Berücksichtigung des ligninolytischen Enzymsystems von Pycnoporus cinnabarinus und Trametes versicolor. Doctoral dissertation, University of Greifswald.

    Google Scholar 

  • Jonas, U., Hammer, E., Haupt, E.T.K., and Schauer, F. (2000). Characterisation of coupling products formed by biotansformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus. Arch. Microbiol. 174, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Jonas, U., Hammer, E., Schauer, F., and Bollag, J.-M. (1998). Transformation of 2-hydroxydibenzofuran by laccases of white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation 8, 321–328.

    Article  CAS  Google Scholar 

  • Jones, K.H., Trudgill, P.W., and Hopper, D.J. (1993). Metabolism of p-cresol by the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 59, 1125–1130.

    PubMed  CAS  Google Scholar 

  • Jonsson, L.J., Saloheimo, M., and Penttila, M. (1997). Laccase from the white-rot fungus Trametes versicolor. cDNA cloning of Icc1 and expression in Pichia pastoris. Curr. Gen. 32, 425–430.

    Article  CAS  Google Scholar 

  • Joo, H., Lin, Z., and Arnold, F.H. (1999). Laboratory evolution of peroxide-mediated cytochrome P450 hydroxlation. Nature 399, 670–673.

    Article  PubMed  CAS  Google Scholar 

  • Juhasz, A.L. and Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Biodegr. 45, 57–88.

    Article  CAS  Google Scholar 

  • Jung, H.C., Xu, F., and Li, K.C. (2002). Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme Microb. Technol. 30, 161–168.

    Article  CAS  Google Scholar 

  • Kaneyuki, H., Deno, H., Hiratsuka, J., Matsuyoshi, T., and Furukawa, T. (1980). Production of sebacic acid from n-decane by mutants derived from Torulopsis candida. J. Ferment. Technol. 58, 405–410.

    CAS  Google Scholar 

  • Kahraman, S. and Yesilada, O. (2001). Industrial and agricultural wastes as substrates for laccase production by white-rot fungi. Folia Microbiol. 46, 133–136.

    Article  CAS  Google Scholar 

  • Karam, J. and Nicell, J.A. (1997). Potential applications of enzymes in waste treatment. J. Chem. Technol. Biotechnol. 69, 141–153.

    Article  CAS  Google Scholar 

  • Kärenlampi, S.O. and Hynninen, PH. (1981). Formation of benzoic acid from biphenyl in the yeast Saccharomyces cerevisiae. Chemosphere 10, 391–396.

    Article  Google Scholar 

  • Kartal, S.N. and Clausen, C.A. (2001). Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood. Int. Biodeter. Biodegr. 47, 183–191.

    Article  CAS  Google Scholar 

  • Kato, S., Kawasaki, T., Urata, T., and Mochizuku, J. (1993). In vitro and ex vivo free radical scavenging activities of carazostatin, carbazomycin B and their derivatives. J. Antibiot. (Tokyo) 46, 1859–1865.

    Article  CAS  Google Scholar 

  • Keitel, T., Simon, O., Borriss, R., and Heinemann, U. (1993). Molecular and active-site structure of a Bacillus 1,3-1,4-ß-glucanase. Proc. Natl. Acad. Sci. U.S.A. 90, 5287–5291.

    Article  PubMed  CAS  Google Scholar 

  • Kennes, C. and Lema, J.M. (1994). Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium. J. Ind. Microbiol. 13, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., Yoon, B.D., Choung, D.H., Oh, H.M., Katsuragi, T., and Tani, Y. (1999). Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp SY16. Appl. Microbiol. Biotechnol. 52, 713–721.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Leem, Y., Kim, K., and Choi, H.T. (2001). Cloning of an acidic laccase gene (clac2) from Coprinus congregatus and its expression by external pH. FEMS Microbiol. Lett. 195, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, T.K. and Farrell, R.L. (1987). Enzymatic combustion—the microbial-degradation of lignin. Annu. Rev. Microbiol. 41, 465–505.

    Article  PubMed  CAS  Google Scholar 

  • Klug, M.J. and Markovetz, A.J. (1967). Degradation of hydrocarbons by members of the genus Candida. Appl. Microbiol. 15, 690–693.

    PubMed  CAS  Google Scholar 

  • Ko, E.M., Leem, Y.E., and Choi, H.T. (2001). Purification and characterization of laccase from the white-rot basidiomycete Ganoderma lucidum. Appl. Microbiol. Biotechnol. 57, 98–102.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S. and Uyama, H. (1998). Enzymatic polymerization for synthesis of polyester and polyaromatics. Enzymes Polym. Synth. ACS Symp. Ser. 684, 58–73.

    CAS  Google Scholar 

  • Kocwahaluch, R. (1995). Easy and inexpensive diffusion tests for detecting the assimilation of aromatic-compounds by yeast-like fungi. 1. Assimilation of dihydroxyphenols. Chemosphere 30, 209–213.

    Article  CAS  Google Scholar 

  • Kokubun, T. and Harborne, J.B. (1995). Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae)—biphenyls or dibenzofurans. Phytochemistry 40, 1649–1654.

    Article  CAS  Google Scholar 

  • Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G. (1995a). Antifungal biphenyl compounds are the phytoalexins of the sapwood of Sorbus aucuparia. Phytochemistry 40, 57–59.

    Article  CAS  Google Scholar 

  • Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G. (1995b). Dibenzofuran phytoalexins from the sapwood of Cotoneaster acutifolius and 5 related species. Phytochemistry 38, 57–60.

    Article  CAS  Google Scholar 

  • Kokubun, T., Harborne, J.B., Eagles, J., and Waterman, P.G. (1995c). Dibenzofuran phytoalexins from the sapwood tissue of Photinia, Puracantha and Crataegus species. Phytochemistry 39, 1033–1037.

    Article  CAS  Google Scholar 

  • Kokubun, T., Harborne, J.B:, Eagles, J., and Waterman, P.G. (1995d). 4-dibenzofuran phytoalexins from the sapwood of Mespilus germanica. Phytochemistry 39, 1039–1042.

    Article  CAS  Google Scholar 

  • Komagata, K., Nakase, T., and Katsuya, N. (1964). Assimilation of hydrocarbons by yeast. I. Preliminary screening. J. Gen. Appl. Microbiol. 10, 313–321.

    Article  Google Scholar 

  • Kon, Y., Iwashina, T., Kashiwadini, H., and Wardlaw, J.H. (1997a). A new benzofuran, isostreptsilic acid, produced by cultured mycobiont of the Usnea orientalis. J. Jpn. Botany 72, 67–71.

    Google Scholar 

  • Kon, Y., Kashiwadani, H., Wardlaw, J.H., and Elix, J.A. (1997b). Effects of culture conditions on dibenzofuran production by cultured mycobionts of lichens. Symbiosis 23, 97–106.

    CAS  Google Scholar 

  • Kostrewa, D., Gruninger-Leitch, F., D’Arcy, A., Broger, C., Mitchell, D.B., and van Loon, A.P.G.M. (1997). Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat. Struct. Biol. 4, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Krauel, H. and Weide, H. (1978). Dicarbonsäurebildung durch Candida guilliermondii, Stamm H17, beim Abbau von n-Tridecan in Batch-Kultur. Z. Allg. Mikrobiol. 18, 47–54.

    Article  CAS  Google Scholar 

  • Kraus, J.J., Munir, LZ., McEldoon, J.P., Clark, D.S., and Dordick, J.S. (1999). Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase. Appl. Biochem. Biotechnol. 80, 221–230.

    Article  CAS  Google Scholar 

  • Krcmar, P. and Ulrich, R. (1998). Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol. 43, 79–84.

    Article  CAS  Google Scholar 

  • Krcmar, P., Kubatova, A., Votruba, L, Erbanova, P., Novotny, C., and Sasek, V. (1999). Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J. Microbiol. Biotechnol. 15, 269–276.

    Article  Google Scholar 

  • Krivobok, S., Benoit-Guyod, J.L., Seigle-Murandi, F., Steiman, R., and Thiault, G.A. (1994). Diversity in phenolmetabolizing capability of 809 strains of micromycetes. Microbiologica 17, 51–60.

    PubMed  CAS  Google Scholar 

  • Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F., and Sasek, V. (2001). PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni, N., Shendye, A., and Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23,411–456.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, S.I. and Anderson, A.J. (2002). Genes for multicopper proteins and laccase activity: Common features in plant-associated Fusarium isolates. Can. J. Botany 80, 563–570.

    Article  CAS  Google Scholar 

  • Lamar, R.T., Evans, J.W., and Glaser, J.A. (1993). Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ. Sci. Technol. 27, 2566–2571.

    Article  CAS  Google Scholar 

  • Lamar, R.T., Glase, J.A., and Kirk, T.K. (1990). Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: Mineralization, voletilization and depletion of PCP. Soil Biol. Biochem. 22, 433–440.

    Article  CAS  Google Scholar 

  • Landi, S. (2000). Mammalian class theta GST and differential susceptibility to carcinogens: A review. Mut. Res. — Rev. Mut. Res. 463, 247–283.

    Article  CAS  Google Scholar 

  • Lang, E., Gonser, A., and Zadrazil, F. (2000). Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp and Dichomitus squalens. J. Basic Microbiol. 40, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Lange, J., Hammer, E., Specht, M., Francke, W., and Schauer, F. (1998). Biotransformation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae. Appl. Microbiol. Biotechnol. 50, 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Lassen, S.F, Breinholti, J., Fuglsang, C.C., Ohmann, A., and Stergaard, PR. (2000). Peniophora phytase. World Patent WO9828408.

    Google Scholar 

  • Lassen, S.F., Breinholti, J., Ostergaard, PR., Brugger, R., Bischoff, A., Wyss, M., and Fuglsang, C.C. (2001). Expression, gene cloning and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, Ceriporia sp., and Trametes pubescens. Appl. Environ. Microbiol. 67, 4701–4707.

    Article  PubMed  CAS  Google Scholar 

  • Laugero, C., Mougin, C., Sigoillot, J.C., Moukha, S., and Asther, M. (1997). Comparison of static and agitated immobilized cultures of Phanerochaete chrysosporium for the degradation of pentachlorophenol and its metabolite pentachloroanisole. Can. J. Microbiol. 43, 378–383.

    Article  CAS  Google Scholar 

  • Layton, A.C., Sanseverino, J., Gregory, B.W., Easter, J.P., Sayler, G.S., and Schultz, T.W. (2002). In vitro estrogen receptor binding of PCBs: Measured activity and detection of hydroxylated metabolites in a recombinant yeast assay. Toxicol. Appl. Pharmacol. 180, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Lebeault, J.-M., Lode, E.T., and Coon, M. (1971). Fatty acid and hydrocarbon hydroxylation in yeast. Role of cytochrome P-450 in Candida tropicalis. Biochem. Biophys. Res. Commun. 42, 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.H., Takahashi, M., and Tsunoda, K. (1992). Fungal detoxification of organoiodine wood preservatives. 2. Fungal metabolism in the decomposition of the chemicals. Holzforschung 46, 467–469.

    Article  CAS  Google Scholar 

  • Legendre, D., Soumillon, P., and Fastrez, J. (1999). Engineering a regulatable enzyme for homogenous immunoassays. Nat. Biotechnol. 17, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, L.R. and Stewart, J.D. (2001). Filamentous fungi: Potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr. Org. Chem. 5, 439–470.

    Article  CAS  Google Scholar 

  • Lehmann, M., Kostrewa, D, Wyss, M., Brugger, R., D’Arcy, A., Pasamontes, L., and van Loon, A.P.G.M. (2000a). From DNA sequence to improved functionality: Using protein squence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13, 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, M., Lopez-Ulibarri, R., Loch, C., Viarouge, C., Wyss, M., and van Loon, A.P.G.M. (2000b). Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci. 9, 1866–1872.

    Article  PubMed  CAS  Google Scholar 

  • Lenin, L., Forchiassin, F., and Ramos, A.M. (2002). Copper induction of lignin-modifying enzymes in the whiterot fungus Trametes trogii. Mycologia 94, 377–383.

    Article  Google Scholar 

  • Leonowicz, A., Cho, N.S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D. et al. (2001). Fungal laccase: Properties and activity on lignin. J. Basic Microbiol. 41, 185–227.

    Article  PubMed  CAS  Google Scholar 

  • Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.S., Hofrichter, M., and Rogalski, J. (1999). Biodegradation of lignin by white-rot fungi. Fungal Genet. Biol. 27, 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Leonowicz, A., Trojanow, J., and Nowak, G. (1972). Ferulic acid as inductor of messenger-RNA synthesis related to laccase formation in wood rotting fungus Pleurotus ostreatus. Microbios 6, 23–31.

    PubMed  CAS  Google Scholar 

  • Leontievsky, A., Myasoedova, N., Pozdnyakova, N., and Golovleva, L. (1997). “Yellow” laccase of Panus trigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett. 413, 446–448.

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky, A.A., Myasoedova, N.M., Baskunov, B.P., Evans, C.S., and Golovleva, L.A. (2000). Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation 11, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky, A.A., Myasoedova, N.M., Baskunov, B.P., Golovleva, L.A., Bucke, C., and Evans, C.S. (2001). Transformation of 2,4,6-trichlorphenol by free and immobilized fungal laccase. Appl. Microbiol. Biotechnol. 57, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky, A.A., Myasoedova, N.M., Baskunov, B.P., Pozdnyakova, N.N., Vares, T., Kalkkinen, N., Hatakka, A.I., and Golovleva, L.A. (1999). Reactions of blue and yellow fungal laccases with lignin model compounds. Biochemistry 64, 1150–1156.

    PubMed  CAS  Google Scholar 

  • Lesage-Meessen, G., Delattre, M., Haon, M., Thibault, J.F., Ceccaldi, B.C., Brunerie, P., and Asther, M. (1996). A two-step conversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 50, 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Levin, L. and Forchiassin, F. (2001). Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol. 21, 179–1

    Article  CAS  Google Scholar 

  • Lewis, D.F.V. (1996). Cytochromes P450. Structure, Function and Mechanism. Taylor & Francis, London.

    Google Scholar 

  • Li, K., Xu, F., and Eriksson, K.-E.L. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Environ. Microbiol. 65, 2654–2660.

    PubMed  CAS  Google Scholar 

  • Lindequist, U. and Schauer, F. (2002). Bioactive natural compounds—new possibilities for their derivatization. Screening 3, 48–49.

    Google Scholar 

  • Liu, H.L., Doleyres, Y., Coutinho, P.M., Ford, C., and Reilly, P.J. (2000). Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability. Protein Eng. 13, 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Tewari, R.P., and Williamson, PR. (1999). Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect. Immun. 67, 6034–6039.

    PubMed  CAS  Google Scholar 

  • Loewus, F.A. and Murthy, P.P.N. (2000). Myo-inositol metabolism in plants. Plant Sci. 150, 1–19.

    Article  CAS  Google Scholar 

  • Logan, B.E., Alleman, B.C., Amy, G.L., and Gilbertson, R.L. (1994). Adsorption and removal of pentachlorophenol by white-rot fungi in batch cultures. Water Res. 28, 1533–1538.

    Article  CAS  Google Scholar 

  • Lottermoser, K., Schunck, W.-H., and Asperger, O. (1996). Cytochromes P450 of the sophorose lipid-producing yeast Candida apicola: Heterogeneity and polymerase chain reaction-mediated cloning of two genes. Yeast 12, 565–575.

    Article  PubMed  CAS  Google Scholar 

  • Lottmann, J., Hammer, E., and Schauer, F. (1999). Methyl ketone formation during degradation of phenoxybutyric acid by Penicillium canescens SBUG-M 1139. Arch. Microbiol. 172, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Lucas-Elio, P., Solano, F., and Sanchez-Amat, A. (2002). Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology 148, 2457–2466.

    PubMed  CAS  Google Scholar 

  • Maheshwari, R., Bharadwaj, G., and Bhat, M.K. (2000). Thermophilic fungi: Their physiology and enzymes. Microbiol Mol. Biol. Rev. 64, 461–476.

    Article  PubMed  CAS  Google Scholar 

  • Mai, C., Schormann, W., and Hüttermann, A. (2001a). The effect of ions on the enzymatic induced synthesis of lignin graft copolymers. Enzyme Microb. Technol. 28, 460–466.

    Article  PubMed  CAS  Google Scholar 

  • Mai, C., Schormann, W., and Hiittermann, A. (2001b). Chemo-enzymatically induced copolymerization of phenolics with acrylate compounds. Appl. Microbiol. Biotechnol. 55, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Majcherczyk, A., Johannes, C., and Hiittermann, A. (1999). Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by 2,2′-azino-bis-(3-ethyl-benzothiazoline-6-sulphonic acid) cation radical and dication. Appl. Microbiol. Biotechnol. 51, 267–276.

    Article  CAS  Google Scholar 

  • Mansur, M., Suarez, T., Fernandez-Larrea, J.B., Brizuela, M.A., and Gonzalez, A.E. (1997). Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl. Environ. Microbiol. 63, 2637–2646.

    PubMed  CAS  Google Scholar 

  • Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., and Henriques, A.O. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277, 18849–18859.

    Article  PubMed  CAS  Google Scholar 

  • Maspahy, S., Lamb, D.C., and Kelly, S.L. (1999). Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem. Biophys. Res. Commun. 266, 326–329.

    Article  PubMed  CAS  Google Scholar 

  • May, O., Nguyen, P.T., and Arnold, F.H. (2000). Inverting enantioselectivity and increasing total activity of a key enzyme in a multi-enzyme synthesis creates a viable process for production of L-methionine. Nat. Biotechnol. 18, 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A.F., Hellmuth, K., Schlieker, H., Lopez-Ulibarri, R., Oertel, S., Dahlems, U., Strasser, A.W.M., and van Loon, A.P.G.M. (1999). An expression system matures: A highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 63, 373–381.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, K.A., Lee, H., and Trevors, J.T. (1996). Microbial degradation of pentachlorophenol. Biodegradation 7, 1–40.

    Article  CAS  Google Scholar 

  • McFadden, D.C. and Casadevall, A. (2001). Capsule and melanin synthesis in Cryptococcus neoformans. Med. Mycol. 39(Suppl. 1), 10–30.

    Google Scholar 

  • McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I.M., Marchant, R. et al. (2001). Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 56, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Mester, T. and Tien, M. (2000). Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeter. Biodegr. 46, 51–59 (Sp. Issue).

    Article  CAS  Google Scholar 

  • Michailides, T.J. and Spotts, R.A. (1991). Effects of certain herbicides on the fate of sporangiospores of Mucor piriformis and conidia of Botrytis cinerea and Penicillium expansum. Pesticide Sci. 33, 11–22.

    Article  CAS  Google Scholar 

  • Michizoe, J., Goto, M., and Furusaki, S. (2001). Catalytic activity of laccase hosted in reversed micelles. J. Biosci. Bioeng. 92, 67–71.

    PubMed  CAS  Google Scholar 

  • Middelhoven, W.J. (1993). Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast-like fungi—a literature-review and an experimental approach. Antonie van Leeuwenhoek 63, 125–144.

    Article  PubMed  CAS  Google Scholar 

  • Mielgo, I., Moreira, M.T., Feijoo, G., and Lema, J.M. (2002). Biodegradation of a polymeric dye in a pulsed bed reactor by immobilised Phanerochaete chrysosporium. Water Res. 36, 1896–1901.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, Y., Sakamoto, T., Yazawa, K., Gonoi, T., Ueno, Y., and Hasegawa, S. (1994). Comparison of in vitro antifungal activity of itraconazole and hydroxy-itraconazole by colorimetric MTT assay. Mycoses 37, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Mikolasch, A., Hammer, E., Jonas, U., Popowski, K., Stielow, A., and Schauer, F. (2002). Synthesis of 3-(3,4-dihydroxy-phenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron 58, 7598–7593.

    Article  Google Scholar 

  • Milewski, G.J., Bumpus, J.A., Jurek, M.A., and Aust, S.D. (1988). Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 2885–2888.

    Google Scholar 

  • Min, K.L., Kim, Y.H., Kim, Y.W., Jung, H.S., and Hah, Y.C. (2001). Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch. Biochem. Biophys. 392, 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.B., Vogel, K., Weimann, J., Pasamontes, L., and van Loon, A.P.G.M. (1997). The phytase subfamily of histidine acid phosphatases; isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143, 247–252.

    Google Scholar 

  • Miyagawa, H., Hamada, N., Sato, M., and Ueno, T. (1993). Hypostrepsilic acid, a new dibenzofuran from the cultured lichen mycobiont of Evernia esorodia. Phytochemistry 34, 589–591.

    Article  CAS  Google Scholar 

  • Miyazaki, K., Wintrode, P.L., Grayling, R.A., Rubingh, D.N., and Arnold, F.H. (2000). Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297, 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  • Mobley, D.P., Finkbeiner, H.L., Lockwood, S.H., and Spivack, J. (1993). Synthesis of 3-aryl muconolactones using biphenyl metabolism in Aspergillus. Tetrahedron 49, 3273–3280.

    Article  CAS  Google Scholar 

  • Molina, S.M.G., Pelissari, F.A., and Vitorello, C.B.M. (2001). Screening and genetic improvement of pectinolytic fungi for degumming of textile fibers. Braz. J. Microbiol. 32, 320–326.

    Article  Google Scholar 

  • Mollapour, M. and Piper, P.W. (2001). The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol. Microbiol. 42, 919–930.

    Article  PubMed  CAS  Google Scholar 

  • Mori, M., Aoyama, M., and Doi, S. (1997). Antifiingal constituents in the bark of Magnolia obovata Thunb. Holz Roh. Werkst. 55, 275–278.

    Article  CAS  Google Scholar 

  • Morschhäuser, J. (2002). The genetic basis of fluconazole resistance development in Candida albicans. Biochim. Biophys. Acta 18, 240–248.

    Google Scholar 

  • Mougin, C., Kollmann, A., and Jolivalt, C. (2002). Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnol. Lett. 24, 139–142.

    Article  CAS  Google Scholar 

  • Mukherje, S.K. and Majumdar, S.K. (1971). Fermentative production of pectinases by fungi—screening of organisms and production of enzymes by Aspergillus niger. J. Ferment. Technol. 49, 759–761.

    Google Scholar 

  • Muyima, N.Y.O., Zulu, G., Bhengu, T., and Popplewell, D. (2002). The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Frag. J. 17, 258–266.

    Article  CAS  Google Scholar 

  • Nakamura, Y., Sungusia, M.G., Sawada, T., and Kuwahara, M. (1999). Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J. Biosci. Bioeng. 88, 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Nawas, T. and Alkofahi, A. (1994). Microbial contamination and preservative efficacy of topical creams. J. Clin. Pharm. then 19, 41–46.

    Article  CAS  Google Scholar 

  • Nerud, F. and Misurcova, Z. (1996). Distribution of lignonolytic enzymes in selected white-rot fungi. Folia Microbiol. 41, 264–266.

    Article  CAS  Google Scholar 

  • Neujahr, H.Y. and Varga, J.M. (1970). Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur. J. Biochem. 13, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Niku-Paavola, M.L., Karhunen, E., Kantelinen, A., Viikari, L., Lundell, T., and Hatakka, A. (1990). The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. J. Biotechnol. 13, 211–222.

    Article  CAS  Google Scholar 

  • Nishizawa, Y., Nakabayashi, K., and Shinagawa, E. (1995). Purification and characterization of laccase from white-rot fungus Trametes sanguinea M85-2. J. Ferment. Bioeng. 80, 91–93.

    Article  CAS  Google Scholar 

  • Nojiri, H., Habe, H., and Omari, T. (2001). Bacterial degradation of aromatic compounds via angular dioxygenation. J. Gen. Appl. Microbiol. 47, 279–305.

    Article  PubMed  CAS  Google Scholar 

  • Norsker, M., Jensen, M., and Adler-Nissen, J. (2000). Enzymatic gelation of sugar beet pectin in food products. Food Hydrocolloids 14, 237–243.

    Article  CAS  Google Scholar 

  • Öberg, L.G., Glas, B., Swanson, S.E., Rappe, C.P., and Paul, K.G. (1990). Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch. Environ. Contam. Toxicol. 19, 930–938.

    Article  PubMed  Google Scholar 

  • O’Callaghan, J., O’Brien, M.M., McClean, K., and Dobson, A.D.W. (2002). Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 29, 55–59.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, J. and Shimizu, S. (1999). Microbial enzymes: New industrial applications from traditional screening methods. Trends Biotechnol. 17, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Ohga, S., Smith, M., Thurston, C.F., and Wood, D.A. (1999). Transcriptional regulation of laccase and cellulase genes in the mycelium of Agaricus bisporus during fruit body development on a solid substrate. Mycol. Res. 103, 1557–1560.

    Article  CAS  Google Scholar 

  • Ohkuma, M., Muraoka, S., Tanimoto, T., Fujii, M., Ohta, A., and Takagi, M. (1995). Cyp 52 (cytochrome-P450 alk) multigene family in Candida maltosa. Identification and characterization of 8 members. DNA Cell Biol. 14, 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Okeke, B.C., Paterson, A., Smith, J.E., and Watson-Craik, I.A. (1997). Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl. Microbiol. Biotechnol. 48, 563–569.

    Article  PubMed  CAS  Google Scholar 

  • Okeke, B.C., Smith, J.E., Paterson, A., and Watson-Craik, I.A. (1996). Influence of environmental parameters on pentachlorophenol biotransformation in soil by Lentinula edodes and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 45, 263–2

    Article  PubMed  CAS  Google Scholar 

  • Okumura, T. and Nishikawa, Y. (1996). Gas chromatography-mass spectrometry determination of triclosans in water, sediment and fish samples via methylation with diazomethane. Anal. Chim. Acta 325, 175–184.

    Article  CAS  Google Scholar 

  • O’Malley, D.M., Whetten, R., Bao, W.L., Chen, C.L., and Sederoff, R.R. (1993). The role of laccase in lignification. Plant J. 4, 751–757.

    Article  Google Scholar 

  • Ong, E., Pollock, W.B.R., and Smith, M. (1997). Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomycete Trametes versicolor. Gene 196, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, S. and Saitoh, K. (1997). Formation of chlorodibenzofurans upon thermo-chemical reactions of diphenyl ether herbicide (CNP). Jpn. J. Tox. Environ. Health 43, 293–299.

    CAS  Google Scholar 

  • Otterbein, L., Record, E., Longhi, S., Asther, M., and Moukha, S. (2000). Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. Eur. J. Biochem. 267, 1619–1625.

    Article  PubMed  CAS  Google Scholar 

  • Paice, M.G., Archibald, F.S., Bourbonnais, R., Jurasek, L., Reid, I.D., Charles, T., and Dumonceaux, T. (1996). Enzymology of kraft pulp bleaching by Trametes versicolor. ACS Symp. Ser. 655, 151–164.

    Article  CAS  Google Scholar 

  • Paice, M.G., Bourbonnais, R., Reid, I.D., Archibald, F.S., and Jurasek, L. (1995). Oxidative bleaching enzymes— a review. J. Pulp Paper Sci. 21, J280-J284.

    Google Scholar 

  • Pallerla, S. and Chambers, R.P. (1998). Reactor development for biodegradation of pentachlorophenol. Catal. Today 40, 103–111.

    Article  CAS  Google Scholar 

  • Palmieri, G., Bianco, C., Cennamo, G., Giardina, P., Marino, G., Monti, M., and Sannia, G. (2001). Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 67, 2754–2759.

    Article  PubMed  CAS  Google Scholar 

  • Panwar, S.L., Krishnamurthy, S., Gupta, V., Alarco, A.M., Raymond, M., Sanglard, D., and Prasad, R. (2001). CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albicans. Yeast 18, 1117–1129.

    Article  PubMed  CAS  Google Scholar 

  • Pasamontes, L., Haiker, T., Wyss, M., Henriquez-Huecas, M., Mitchell, D.B., and van Loon, A.P.G.M (1997a). Cloning of phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim. Biophys. Acta 1353, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Pasamontes, L., Haiker, T., Wyss, M., Tessier, M., and van Loon, A.P.G.M (1997b). Gene cloning, purification, and characterization of a heat stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63, 1696–1700.

    PubMed  CAS  Google Scholar 

  • Patel, R.N., Thakker, G.D., and Rao, K.R. (1994). Potential use of a white-rot fungus Antrodiella sp. RK1 for biopulping. J. Biotechnol. 36, 19–23.

    Article  CAS  Google Scholar 

  • Pen, J., Verwoerd, T.C., Vanparidon, P.A., Beudeker, R.F., van den Elzen, P.J.M., Geerse, U., van der Klis, J.D., Versteegh, H.A.J. et al. (1993). Phytase-containing transgenic seeds as novel feed additive for improved phosphorous utilization. Biotechnology 11, 811–814.

    Article  CAS  Google Scholar 

  • Penttila, M. (1998). Heterologous protein production in Trichoderma. In G.E. Harmann and C. Kubicek (eds.) Trichoderma and Gliocladium—enzymes, biological control and commercial applications. Taylor & Francis, London, pp. 365–382.

    Google Scholar 

  • Perfect, J.R., Wong, B., Chang, Y.C., Kwon-Chung, K.J., and Williamson, PR. (1998). Cryptococcus neoformans: Virulence and host defences. Med. Mycol. 36(Suppl. 1), 79–86.

    PubMed  CAS  Google Scholar 

  • Perie, F.H. and Gold, M.H. (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57, 2240–2245.

    PubMed  CAS  Google Scholar 

  • Perie, EH., Reddy, G.V.V., Blackburn, N.J., and Gold, M.H. (1998). Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch. Biochem. Biophys. 353, 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Petit, F., Le Goff, P., Cravedi, J.P., Valotaire, Y., and Pakdel, F. (1997). Two complementary bioassays for screening the estrogenic potency of xenobiotics: Recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J. Molec. Endocrinol. 19, 321–335.

    Article  CAS  Google Scholar 

  • Petrounia, I.P. and Arnold, F.H. (2000). Designed evolution of enzymatic properties. Curr. Opin. Biotechnol. 11, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Petter, R., Kang, B.S., Boekhout, T., Davis, B.J., and Kwon-Chung, K.J. (2001). A survey of heterobasidiomycetous yeasts for the presence of the genes homologous to virulence factors of Filobasidiella neoformans, CNLAC1 and CAP59. Microbiology 147, 2029–2036.

    PubMed  CAS  Google Scholar 

  • Piacquadio, P., De Stefano, G., Sammartino, M., and Sciancalepore, V. (1997). Phenols removal from apple juice by laccase immobilized on Cu2+-chelate regenerable carrier. Biotechnol. Techn. 11, 515–517.

    Article  CAS  Google Scholar 

  • Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., and Eirich, L.D. (1992). Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio-Technology 10, 894–898.

    PubMed  CAS  Google Scholar 

  • Pickard, M.A., Roman, R., Tinoco, R., and Vazquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65, 3805–3809.

    PubMed  CAS  Google Scholar 

  • Pijnenburg, A.M.C.M., Everts, J.W., de Boer, J., and Boon, J.P (1995). Polybrominated biphenyl and diphenyl ether flame retardants: Analysis, toxicity and environmental occurrence. Rev. Environ. Contam. Toxicol. 141, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Pilz, R., Hammer, E., Schauer, F., and Kragl, U. (2003). Laccase-catalyzed synthesis of coupling products of phenolic substrates in different reactors. Appl. Microbiol. Biotechnol. 60, 708–712.

    PubMed  CAS  Google Scholar 

  • Piontek, K. (2002). New insights into lignin peroxidase. Ind. J. Chem. A — Inorg. Bio-Inorg. Phys. Theoret. Analyt. Chem. 41, 46–53.

    Google Scholar 

  • Planas, A. (2000). Bacterial 1,3-1,4-ß-glucanases: Structure, function and protein engineering. Biochim. Biophys. Acta 1543, 361–382.

    Article  PubMed  CAS  Google Scholar 

  • Pointing, S.B. (2001). Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 57, 20–33.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, S.J.T., Hrudey, S.E., and Fedorak, P.M. (1994). Bioremediation of petroleum-and creosote-contaminated soils—a review of constraints. Waste Manag. Res. 12, 173–194.

    CAS  Google Scholar 

  • Polnisch, E., Kneifel, F., Franzke, H., and Hofmann, K.H. (1992). Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2, 193–199.

    Article  CAS  Google Scholar 

  • Pommer, E.H. and Lorentz, G. (1982). Resistance of Botrytis cinerea to dicarboximide fungicides—a literature review. Crop Protect. 1, 221–230.

    Article  CAS  Google Scholar 

  • Poutanen, K. (1997). Enzymes: An important tool in the improvement of the quality of cereal foods. Trends Food Sci. Tech. 8, 300–306.

    Article  Google Scholar 

  • Prenafeta-Boldu, F.X., Luykx, D.M.A.M., Vervoort, J., and de Bont, J.A.M. (2001). Fungal metabolism of toluene: Monitoring of fluorinated analogs by F-19 nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 67, 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • Quan, C., Zhang, L., Wang, Y., and Ohta, Y. (2001). Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J. Biosci. Bioeng. 92, 154–160.

    PubMed  CAS  Google Scholar 

  • Rabinovich, M.L., Melnik, M.S., and Boloboba, A.V. (2002). Microbial cellulases. Appl. Biochem. Microbiol. 38, 305–321.

    Article  CAS  Google Scholar 

  • Radwan, S.S. and Sorkhoh, N.A. (1993). Lipids of n-alkane-utilizing microorganisms and their application potential. Adv. Appl. Microbiol. 39, 29–90.

    Article  CAS  Google Scholar 

  • Raghukumar, C., D’Souza, T.M., Thorn, R.G., and Reddy, C.A. (1999). Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl. Environ. Microbiol. 65, 2103–2111.

    PubMed  CAS  Google Scholar 

  • Rahouti, M., Steiman, R., Seigle-Murandi, F., and Christov, L.P. (1999). Growth of 1044 strains and species of fungi on 7 phenolic lignin model compounds. Chemosphere 38, 2549–2559.

    Article  CAS  Google Scholar 

  • Ralph, J.P., Graham, L.A., and Catcheside, D.E.A. (1996). Extracellular oxidases and the transformation of solubilised low rank coal by wood-rot fungi. Appl. Microbiol. Biotechnol. 46, 226–232.

    Article  CAS  Google Scholar 

  • Ratledge, C. (1988). Hydrocarbons. Products of hydrocarbon microorganism interaction. In D.R. Houghton, R.N. Smith, and H.O.W. Eggins, (eds.) Biodeterioration 7, Elsevier Appl. Sci., London, pp. 219–235.

    Google Scholar 

  • Ravelet, C., Krivobok, S., Sage, L., and Steiman, R. (2000). Biodegradation of pyrene by sediment fungi. Chemosphere 40, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Read, G. and Vining, L.C. (1959). Telephoric acid. Can. J. Chem. 37, 1442–1445.

    Article  CAS  Google Scholar 

  • Record, E., Punt, P.J., Chamkha, M., Labat, M., van den Hondel, C.A.M.J.J., and Asther, M. (2002). Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur. J. Biochem. 269, 602–609.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, C.A. and D’Souza, T.M. (1994). Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev. 13, 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, G.V.B., Gelpke, M.D.S., and Gold, M.H. (1998). Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: Involvement of reductive dechlorination. J. Bacteriol. 180, 5159–5164.

    PubMed  CAS  Google Scholar 

  • Reddy, G.V.B., Joshi, D.K., and Gold, M.H. (1997). Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens. Microbiology 143, 2353–2360.

    Article  CAS  Google Scholar 

  • Reyes, P., Pickard, M.A., and Vasquez-Duhalt, R. (1999). Hydroxybenzotriazole increases the range if textile dyes decolorized by immobilized laccase. Biotechnol. Lett. 21, 875–880.

    Article  CAS  Google Scholar 

  • Richardson, A., Duncan, J., and McDougall, G.J. (2000). Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: Identification of a conifer laccase. Tree Physiol. 20, 1039–1047.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, A.E., Hadobas, P.A., and Hayes, J.E. (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from hytate. Plant J. 25, 641–649.

    Article  PubMed  CAS  Google Scholar 

  • Ricotta, A., Unz, R.F., and Bollag, J.M. (1996). Role of a laccase in the degradation of pentachlorophenol. Bull. Environ. Contam. Toxicol. 57, 560–567.

    Article  PubMed  CAS  Google Scholar 

  • Rigling, D. and van Alfen, N.K. (1993). Extracellular and intracellular laccases of the chestnut blight fungus, Cryphonectria parasitica. Appl. Environ. Microbiol. 59, 3634–3639.

    PubMed  CAS  Google Scholar 

  • Rigot, J. and Matsumura, F. (2002). Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings. J. Environ. Sci. Health B 37, 202–210.

    Google Scholar 

  • Roberts, S.A., Weichsel, A., Grass, G., Thakali, K., Hazzard, J.T., Tollin, G., Rensing, C., and Montfort, W.R. (2002). Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci.U.S.A. 99, 2766–2771.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T., Chandran, B., and Nigam, P. (2001). Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb. Technol. 29, 575–579.

    Article  CAS  Google Scholar 

  • Rodriguez, E., Pickard, M.A., and Vazquez-Duhalt, R. (1999). Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbiol. 38, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Rogalski, J., Lundell, T.K., Leonowicz, A., and Hatakka, A.I. (1991). Influence of aromatic compounds and lignin on production of ligninolytic enzymes by Phlebia radiata. Phytochemisiry 30, 2869–2872.

    Article  CAS  Google Scholar 

  • Romero, M.C., Hammer, E., Cazau, M.C., and Arambarri, A.M. (2001). Selection of autochthonous yeast strains able to degrade biphenyl. World J. Microbiol. Biotechnol. 17, 591–594.

    Article  CAS  Google Scholar 

  • Rosenbrock, P., Martens, R., Buscot, F., Zadrazil, F., and Munch, J.C. (1997). Enhancing the mineralization of [U-14C]dibenzo-p-dioxin in three different soils by addition of organic substrate or inoculation with whiterot fungi. Appl. Microbiol. Biotechnol. 48, 665–670.

    Article  CAS  Google Scholar 

  • Rothemund, C., Amann, R., Klugbauer, S., Manz, W., Bieber, C., Schleifer, K.H., and Wilderer, P. (1996). Microflora of 2,4-dichlorophenoxyacetic acid degrading biofilms on gas permeable membranes. Syst. Appl. Microbiol 19, 608–615.

    Article  CAS  Google Scholar 

  • Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J.K.C., and Jones, T.A. (1990). Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386.

    Article  PubMed  CAS  Google Scholar 

  • Ruttimann-Johnson, C., Cullen, D., and Lamar, R.T. (1994). Manganese peroxidases of the white-rot fungus Phanerochaete sordida. Appl. Environ. Microbiol. 60, 599–605.

    PubMed  CAS  Google Scholar 

  • Ruttimann-Johnson, C. and Lamar, R.T. (1996). Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl. Environ. Microbiol. 62, 3890–3893.

    PubMed  CAS  Google Scholar 

  • Ryazanova, L.P., Mikhaleva, N.I., Solveva, I.V., Boev, A.V., Okunev, O.N., and Kulaev, I.S. (1996). Pectolytic enzymes from Aspergillus heteromorphus. Appl. Biochem. Microbiol. 32, 1–6.

    Google Scholar 

  • Ryu, D.D.Y. and Nam, D.-H. (2000). Recent progress in biomolecular engineering. Biotechnol. Progr. 16, 2–16.

    Article  CAS  Google Scholar 

  • Sack, U., Heinze, T.M., Deck, J., Cerniglia, C.E., Martens, R., Zadrazil, F., and Fritsche, W. (1997a). Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl. Environ. Microbiol. 63, 3919–3925.

    PubMed  CAS  Google Scholar 

  • Sack, U., Hofrichter, M., and Fritsche, W. (1997b). Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol. Lett. 152, 227–2

    Article  PubMed  CAS  Google Scholar 

  • Safe, S., Ellis, B., and Hutzinger, O. (1976). The in vitro hydroxylation of 4′-chloro-4-biphenylol by a mushroom tyrosinase preparation. Can. J. Microbiol. 22, 104–106.

    Article  PubMed  CAS  Google Scholar 

  • Safe, S., Hutzinger, O., Ecobichon, O.J., and Grey, A.A. (1975a). The metabolism of 4′-chloro-4-biphenylol in the rat. Can. J. Biochem. 53, 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Safe, S., Platonow, N., and Hutzinger, O. (1975b). Metabolism of chlorobiphenyls in the goat and cow. J. Agric. Food Chem. 23, 259–261.

    Article  PubMed  CAS  Google Scholar 

  • Sahasrabudhe, N.A. and Sankpal, N.V. (2001). Production of organic acids and metabolites of fungi for food industry. In G.G. Khachatourians and D.K. Arora (eds.), Applied Mycology and Biotechnology. Vol. 1: Agriculture and Food Production (pp. 387–425). Amsterdam: Elsevier.

    Google Scholar 

  • Sahasrabudhe, S.R., Shailubhai, K., Vora, K.A., and Modi, V.V. (1987). Dehalogenation of chlorinated derivatives of phenoxyacetic acid by Aspergillus niger. Microbios 34, 19–22.

    CAS  Google Scholar 

  • Sanchez-Amat, A., Lucas-Elio, P., Fernandez, E., Garcia-Borron, J.C., and Solano, F. (2001). Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophys. Acta — Protein Struct. Mol. Enzymol. 1547, 104–116.

    Article  CAS  Google Scholar 

  • Sanglard, D. and Loper, J.C. (1989). Characterization of the alkane-inducible cytochrome P-450 (P-450 alk) gene from the yeast Candida tropicalis. Identification of a new P-450 gene family. Gene 76, 121–136.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, J., Sigurskjold, B.W., Christensen, U., Frandsen, T.P., Mrgorodskaya, E., Harrison, A., Roepstorff, P., and Svensson, B. (2000). Glucoamylase: Structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543, 275–29

    Article  PubMed  CAS  Google Scholar 

  • Saxena, R.K., Gupta, R., Saxena, S., and Gulati, R. (2001). Role of fungal enzymes in food processing. In G.G. Khachatourians and D.K. Arora (eds.) Applied mycology and biotechnology: Agriculture and food production (Vol. 1). Elsevier Science, Amsterdam, pp. 353–386.

    Google Scholar 

  • Schäfer, A., Specht, M., Hetzheim, A., Francke, W., and Schauer, F. (2001). Synthesis of substituted imidazoles and dimerization products using cells and laccase from Trametes versicolor. Tetrahedron 57, 7693–7699.

    Article  Google Scholar 

  • Schauer, F., Henning, K., Pscheidl, H., Wittich, R.M., Fortnagel, P., Wilkes, H., Sinnwell, V., and Francke, W. (1995). Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752. Biodegradation 6, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, F., Lindequist, IL, Hammer, E., Jülich, W.D., Schäfer, A., and Jonas, U. (2001). Biotransformation von biologisch aktiven Verbindungen aus verschiedenen chemischen Stoffklassen mittels der Enzyme Laccase und Manganperoxidase. Patentschrift, PCP/EP 01/07152.

    Google Scholar 

  • Scheibner, K., Hofrichter, M., and Fritsche, W. (1997). Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnol. Lett. 19, 835–839.

    Article  CAS  Google Scholar 

  • Scheller, U., Zimmer, T., Becher, D., Schauer, F., and Schunck, W.-H. (1998). Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3. J. Biol. Chem. 273, 32528–32534.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, M. and Fischer, R. (2001). Molecular characterization of a blue-copper laccase, TILA, of Aspergillus nidulans. FEMS Microbiol. Lett. 199, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Schlosser, D. and Hofer, C. (2002). Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl. Environ. Microbiol. 68, 3514–3521.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, O., Dittberner, D., and Faix, O. (1991). On the reaction of some bacteria and fungi on coal-tar creosote. Mater. Organismen 26, 13–30.

    Google Scholar 

  • Scholz, F., Schädel, S., Schultz, A., and Schauer, F. (2000). Chronopotentiometric study of laccase-catalyzed oxidation of quinhydrone microcrystals immobilised on a gold electrode surface and of the oxidation of a phenol-derivatised graphite electrode surface. J. Electroanalyt. Chem. 480, 241–248.

    Article  CAS  Google Scholar 

  • Schouten, A., Wagemakers, L., Stefanato, F.L., van der Kaaij, R.M., and van Kann, J.A.L. (2002). Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol. Microbiol. 43, 883–894.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, A., Jonas, U., Hammer, E., and Schauer, F. (2001). Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl. Environ. Microbiol. 67, 4377–4381.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, T.W., Kraut, D.H., Sayler, G.S., and Layton, A.C. (1998). Estrogenicity of selected biphenyls evaluated using a recombinant yeast assay. Environ. Toxicol. Chem. 17, 1727–1729.

    Article  CAS  Google Scholar 

  • Schunck, W.-H., Kärgel, E., Grass, B., Wiedmann, B., Mauersberger, S., Köpke, K., Kiessling, U., Strauss, M. et al. (1989). Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem. Biophys. Res. Commun. 161, 843–850.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R.D., Williams, A.L., and Hutchinson, D.B. (1980). Microbial production of 4,4′-dihydroxybiphenyl: Biphenyl hydroxylation by fungi. Appl. Environ. Microbiol. 39, 702–708.

    PubMed  CAS  Google Scholar 

  • Sealey, J., Ragauskas, A.J., and Elder, T.J. (1999). Investigations into laccase-mediator delignification of kraft pulps. Holzforschung 53, 498–502.

    Article  CAS  Google Scholar 

  • Seghezzi, W., Meili, C., Ruffiner, R., Künzi, R., Sanglard, D., and Fiechter, A. (1992). Identification and characterization of additional members of the cytochrome P450 multigene family cyp 52 of Candida tropicalis. DNA Cell Biol. 11, 767–780.

    Article  PubMed  CAS  Google Scholar 

  • Seigle-Murandi, FM., Krivobok, S.M.A., Steiman, R.L., Benoit-Guyod, J.-L.A., and Thiault, G.-A. (1991). Biphenyl oxide hydroxylation by Cunninghamella echinulata. J. Agric. Food Chem. 39, 428–430.

    Article  CAS  Google Scholar 

  • Seigle-Murandi, F., Steiman, R., Benoit-Guyod, J.L., and Guiraud, P. (1993). Fungal degradation of pentachlorophenol by Micromycetes. J. Biotechnol. 30, 27–35.

    Article  CAS  Google Scholar 

  • Seigle-Murandi, F., Toe, A., Benoit-Guyod, J.L., Steiman, R., and Kadri, M. (1995). Depletion of pentachlorophenol by deuteromycetes isolated from soil. Chemosphere 31, 2677–2686.

    Article  CAS  Google Scholar 

  • Sephton, M.A., Looy, C.V., Veefkind, R.J., Visscher, H., Brinkhuis, H., and de Leeuw, J.W. (1999). Cyclic diaryl ethers in a Late P sediment. Org. Geochem. 30, 267–273.

    Article  CAS  Google Scholar 

  • Shafiee, A., Harris, G., Motamedi, H., Rosenbach, M., Chen, T., Zink, D., and Heimbuch, B. (2001). Microbial hydroxylation of rustmicin (galbonolide A) and galbonolide B, two antifungal products produced by Micromonospora sp. J. Mol. Catal. B—Enzym., 11, 237–24

    Article  CAS  Google Scholar 

  • Shailubhai, K., Sahasrabudhe, S.R., Vora, K.A., and Modi, V.V. (1983). Degradation of chlorinated derivatives of phenoxyacetic acid and benzoic acid by Aspergillus niger. FEMS Microbiol. Lett. 18, 279–282.

    Article  CAS  Google Scholar 

  • Sheldon, R.A. (1994). Metalloporphyrius in catalytic oxidation. Marcel Dekker Inc., New York.

    Google Scholar 

  • Sherry, J. (1994). Effects of 2,4-dichlorophenoxyacetic acid on fungal propagules in fresh-water ponds. Environ. Toxicol Water Qual. 9, 209–221.

    Article  CAS  Google Scholar 

  • Shimizu, M. (1993). Purification and characterization of phytase and acid phosphatase by Aspergillus oryzae K1. Biosci. Biotechnol. Biochem. 57, 1364–1365.

    Article  CAS  Google Scholar 

  • Shuttleworth, K.L., Postie, L., and Bollag, J.M. (1986). Production of induced laccase by the fungus Rhizoctonia praticola. Can. J. Microbiol. 32, 867–870.

    Article  CAS  Google Scholar 

  • Sietmann, R. (2002). Physiologische und biochemische Charakterisierung der Transformation umweltrelevanter Verbindungen mit Biarylstruktur durch Hefen der Gattung Trichosporon. Doctoral dissertation, University of Greifswald.

    Google Scholar 

  • Sietmann, R., Hammer, E., and Schauer, F. (2002). Biotransformation of biarylic compounds by yeasts of the genus Trichosporon. Syst. Appl. Microbiol. 25, 332–339.

    Article  PubMed  CAS  Google Scholar 

  • Sietmann, R., Hammer, E., Moody, J., Cerniglia, C.E., and Schauer, F. (2000). Hydroxylation of biphenyl by the yeast Trichosporon mucoides. Arch. Microbiol. 174, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Sietmann, R., Hammer, E., Specht, N., Cerniglia, C.E., and Schauer, F. (2001). Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides. Appl. Environ. Microbiol. 67, 4158–4165.

    Article  PubMed  CAS  Google Scholar 

  • Silva, C.M.M.D., de Melo, I.S., Maia, A.D.N., and Abakerli, R.B. (1999). Isolation of carbendazim degrading fungi. Pesqui. Agropecu. Bras. 34, 1255–1264.

    Article  Google Scholar 

  • Sinnott, M.L. (1990). Catalytic mechanism of enzymatic glycosyl transfer. Chem. Rev. 90, 1171–1202.

    Article  CAS  Google Scholar 

  • Skorobogatko, O.V., Stepanova, E.V., Gavrilova, V.P., and Yaropolov, A.I. (1996). Effects of inducer on the synthesis of extracellular laccase by Coriolus hirsutus, a basidial fungus. Appl. Biochem. Microbiol. 32, 473–376.

    Google Scholar 

  • Slomczynski, D., Nakas, J.P., and Tanenbaum, S.W. (1995). Production and characterization of laccase from Botrytis cinerea-61-34. Appl. Environ. Microbiol. 61, 907–912.

    PubMed  CAS  Google Scholar 

  • Smirnov, S.A., Koroleva, O.V., Gavrilova, V.P., Belova, A.B., and Klyachko, N.L. (2001). Laccases from basidiomycetes: Physicochemical characteristics and substrate specificity towards methoxyphenolic compounds. Biochemistry (Moscow) 66, 774–779.

    Article  CAS  Google Scholar 

  • Smith, J.G. and Christophers, A.J. (1992). Phenoxy herbicides and chlorophenols: A case control study on soft tissue sarcoma and malignant lymphoma. Br. J. Cancer 65, 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.V. and Rosazza, J.P. (1974). Microbial models of mammalian metabolism. Arch. Biochem. Biophys. 161, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.V., Davis, P.J., Clark, A.M., and Glover-Milton, S. (1980). Hydroxylation of biphenyl by fungi. J. Appl. Bacteriol. 49, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Soares, G.M.B., Amorim, M.T.P., Hrdina, R., and Costa-Ferreira, M. (2002). Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem. 37, 581–587.

    Article  CAS  Google Scholar 

  • Soden, D.M. and Dobson, A.D.W. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147, 1755–17

    PubMed  CAS  Google Scholar 

  • Solano, F., Garcia, E., de Egea, E.P., and Sanchez-Amat, A. (1997). Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol. 63, 3499–3506.

    PubMed  CAS  Google Scholar 

  • Solano, F., Lucas-Elio, P., Fernandez, E., and Sanchez-Amat, A. (2000). Marinomonas mediterranea MMB-1 transposon mutagenesis: Isolation of a multipotent polyphenol oxidase mutant. J. Bacteriol. 182, 3754–3760.

    Article  PubMed  CAS  Google Scholar 

  • Srebotnik, E. and Hammel, K.E. (2000). Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J. Biotechnol. 81, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Steffens, J.J., Pell, E.J., and Tien, M. (1996). Mechanisms of fungicide resistance in phytopathogenic fungi. Curr. Opin. Biotechnol. 7, 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Stemmer, W.P.C. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  • Stenroos, S. (1989). Taxonomic revision of the Cladonia miniata group. Ann. Bot. Fenn. 26, 237–261.

    Google Scholar 

  • Stephan, L, Leithoff, H., and Peek, R.D. (1996). Microbial conversion of wood treated with salt preservatives. Mater. Organismen 30, 179–199.

    CAS  Google Scholar 

  • Stope, M.B., Becher, D., Hammer, E., and Schauer, F. (2002). Cometabolic ring fission of dibenzofuran by Gramnegative and Gram-positive biphenyl-utilizing bacteria. Appl. Microbiol. Biotechnol. 59, 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y. and Cheng, J.Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Biores. Technol. 83, 1–11.

    Article  CAS  Google Scholar 

  • Sunna, A. and Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.

    Article  PubMed  CAS  Google Scholar 

  • Svenson, A., Kjeller, L.-O., and Rappe, C. (1989). Enzyme-mediated formation of 2,3,7,8-tetrasubstituted chlorinated dibenzodioxins and dibenzofurans. Environ. Sci. Technol. 23, 900–902.

    Article  CAS  Google Scholar 

  • Takada, S., Nakamura, M., Matsueda, T., Kondo, R., and Sakai, K. (1996). Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 62, 4323–4328.

    PubMed  CAS  Google Scholar 

  • Takagi, M., Ohkuma, M., Kobayashi, N., Watanabe, M., and Yano, K. (1989). Purification of cytochrome P450alk from normal-grown cells of Candida maltosa, and cloning and nucleotide sequencing of the encoding gene. Agric. Biol. Chem. 53, 2217–2227.

    Article  CAS  Google Scholar 

  • Takahashi, A., Agatsuma, T., Matsuda, M., Ohta, T., Nunozawa, T., Endo, T., and Nozoe, S. (1992). Russuphelin A, a new cytotoxic substance from the mushroom Russula subnigricans. Chem. Pharm. Bull. 40, 3185–3188.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, A., Agatsuma, T., Ohta, T., Nunozawa, T., and Endo, T. (1993). Russuphelin-B, russuphelin-C, russuphelin-D, russuphelin-F, new cytotoxic substances from the mushroom Russula subnigricans Hongo. Chem. Pharm. Bull. 41, 1726–1729.

    Article  PubMed  CAS  Google Scholar 

  • Takamine, J. (1894). Process of making diastatic enzyme. US Patent 525, 823.

    Google Scholar 

  • Tanaka, C., Tajima, S., Furusawa, I., and Tsuda, M. (1992). The Pgrl mutant of Cochliobolus heterostrophus lacks a p-diphenol oxidase involved in naphthalenediol melanin synthesis. Mycol. Res. 96, 959–964.

    Article  CAS  Google Scholar 

  • Tanaka, T., Tonosaki, T., Nose, M., Tomidokoro, N., Kadomura, N., Fujii, T., and Taniguchi, M. (2001). Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp. in a rotating reactor. J. Biosci. Bioeng. 92, 312–316.

    PubMed  CAS  Google Scholar 

  • Tekere, M., Ncube, I., Read, J.S., and Zvauya, R. (2002). Biodegradation of the organochlorine pesticide, lindane by a sub-tropical white rot fungus in batch and packed bed bioreactor systems. Environ. Technol. 23, 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Temp, U., Meyrahn, H., and Eggert, C. (1999a). Extracellular phenol oxidase patterns during depolymerization of low-rank coal by three basidiomycetes. Biotechnol. Lett. 21, 281–287.

    Article  CAS  Google Scholar 

  • Temp, U., Zierold, U., and Eggert, C. (1999b). Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236, 169–177.

    Article  PubMed  CAS  Google Scholar 

  • ten Have, R. and Teunissen, P.J.M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101, 3397–3413.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, S., Fernandes, E., and Bollag, J.M. (2002). Enzymatic transformation and binding of labeled 2,4,6-trini-trotoluene to humic substances during an anaerobic/aerobic incubation. J. Environ. Qual. 31, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, B.R., Yonekura, M., Morgan, T.D., Czapla, T.H., Hopkins, T.L., and Kramer, K.J. (1989). A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem. 19, 611–622.

    Article  CAS  Google Scholar 

  • Thomas, D.R., Carswell, K.S., and Georgiou, G. (1992). Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol. Bioeng. 40, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Tomschy, A., Brugger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., Lassen, S.F., Burger, D. et al. (2002). Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68, 1907–1913.

    Google Scholar 

  • Tomschy, A., Tessier, M., Wyss, M., Brugger, R., Broger, C., Schnoebelen, L., van Loon, A.P.G.M, and Pasamontes, L. (2000). Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three dimensional structure. Protein Sci. 9, 1304–1311.

    Article  PubMed  CAS  Google Scholar 

  • Törrönen, A., Harkki, A., and Rouvinen, J. (1994). Three-dimensional structure of endo-1,4-beta-xylañase II from Trichoderma reesei: Two conformational states in the active site. EMBO J. 13, 2493–2501.

    PubMed  Google Scholar 

  • Tsai, H.F., Wheeler, M.H., Chang, Y.C., and Kwon-Chung, K.J. (1999). A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J. Bacteriol. 181, 6469–6477.

    PubMed  CAS  Google Scholar 

  • Tsioulpas, A., Dimou, D., Iconomou, D., and Aggelis, G. (2002). Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (lacease) activity. Biores. Technol. 84, 251–257.

    Article  CAS  Google Scholar 

  • Tsujimoto, T., Uyama, H., and Kobayashi, S. (2001). Polymerization of vinyl monomers using oxidase catalysts. Macromolec. Biosci. 1, 228–232.

    Article  CAS  Google Scholar 

  • Tuomela, M., Lyytikainen, M., Oivanen, P., and Hatakka, A. (1999). Mineralization and conservation of pentachlorophenol (PCP) in soil inoculated with the white rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74.

    Article  CAS  Google Scholar 

  • Turner, W.B. and Aldridge, D.C. (1983). Fungal metabolites II. Academic Press, London.

    Google Scholar 

  • Uchida, H., Fukuda, T., Miyamoto, H., Kawabata, T., Suzuki, M., and Uwajima, T (2001). Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem. Biophys. Res. Commun. 287, 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Ullah, M.A., Bedford, C.T., and Evans, C.S. (2000). Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl. Microbiol. Biotechnol. 53, 230–234.

    Article  PubMed  CAS  Google Scholar 

  • Uyama, H. (2001). Enzymatic synthesis and applications of new polymeric materials. Kobunshi Ronbunshu 58, 382–296.

    Article  CAS  Google Scholar 

  • Valli, K. and Gold, M.H. (1991). Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 173, 345–352.

    PubMed  CAS  Google Scholar 

  • van Aken, B. and Agathos, S.N. (2002). Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Appl. Microbiol. Biotechnol. 58, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • van Aken, B., Hofrichter, M., Scheibner, K., Hatakka, A.I., Naveau, H., and Agathos, S.N. (1999). Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10, 83–91.

    Article  PubMed  Google Scholar 

  • van den Brink, H.J.M., van Gorcom, R.F.M., van den Hondel, C.A.M.J.J., and Punt, P.J. (1998). Cytochrome P450 enzyme systems in fungi. Fungal Genet. Biol. 23, 1–17.

    Article  PubMed  Google Scholar 

  • Vares, T., Kalsi, M., and Hatakka, A. (1995). Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat-straw. Appl. Environ. Microbiol. 61, 3515–3520.

    PubMed  CAS  Google Scholar 

  • Vares, T., Lundell, T.K., and Hatakka, A.I. (1993). Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva. Enzyme Microb. Technol. 15, 664–669.

    Article  CAS  Google Scholar 

  • Vasconcelos, A.F.D., Barbosa, A.M., Dekker, R.F.H., Scarminio, I.S., and Rezende, M.I. (2000). Optimization of laccase production by Botrysphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem. 35, 1131–1138.

    Article  CAS  Google Scholar 

  • Vazquezduhalt, R., Westlake, D.W.S., and Fedorak, P.M. (1994). Lignin peroxidase oxidation of aromatic-compounds in systems containing organic-solvents. Appl. Environ. Microbiol. 60, 459–466.

    CAS  Google Scholar 

  • Venkov, P., Topashka-Ancheva, M., Georgieva, M., Alexieva, V., and Karanov, E. (2000). Genotoxic effect of substituted phenoxyacetic acids. Arch. Toxicol. 74, 560–566.

    Article  PubMed  CAS  Google Scholar 

  • Viney, I. and Bewly, R.J.F. (1990). Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls. Appl. Environ. Contam. Toxicol. 19, 789–796.

    Article  CAS  Google Scholar 

  • Vroumsia, T., Steiman, R., Seigle-Murandi, F., and Benoit-Guyod, J.L. (1999). Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) by selected fungi. Chemosphere 39, 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  • Vyas, B.R.M., Sasek, V., Matucha, M., and Bubner, M. (1994a). Degradation of 3,3′,4,4′-tetrachlorobiphenyl by selected white-rot fungi. Chemosphere 28, 1127–1134.

    Article  CAS  Google Scholar 

  • Vyas, B.R.M., Volc, J., and Sasek, V. (1994b). Ligninolytic enzymes of selected white-rot fungi cultivated on wheat-straw. Folia Microbiol. 39, 235–240.

    Article  CAS  Google Scholar 

  • Wachtmeister, C.A. (1956). Studies on the chemistry of lichens. Acta Chem. Scand. 10, 1404–1413.

    Article  CAS  Google Scholar 

  • Wagner, H.-C., Schramm, K.-W., and Hutzinger, O. (1990). Biogenes polychloriertes Dioxin aus Trichlorphenol. Z. Umweltchem. Ökotox. 2, 63–65.

    Article  CAS  Google Scholar 

  • Wahleithner, J.A., Xu, F., Brown, K.M., Brown, S.H., Golightly, E.J., Halkier, T., Kauppinen, S., Pederson, A. et al. (1996). The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr. Genet. 29, 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Waldo, G.S., Standish, B.M., Berendzen, J., and Terwilliger, T.C. (1999). Rapid protein folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695.

    Article  PubMed  CAS  Google Scholar 

  • Wallnöfer, R.R., Engelhardt, G., Safe, O., and Hutzinger, O. (1973). Microbial hydroxylation of 4-chlorobiphenyl and 4,4′-chlorobiphenyl. Chemosphere 2, 69–72.

    Article  Google Scholar 

  • Ward, M., Wilson, L.J., Kodama, K.H., Rey, M.W., and Berka, R.M. (1990). Improved production of chymosin in Aspergillus by expression as a glucoamylase chymosin fusion. Bio-Technology 8, 435–440.

    PubMed  CAS  Google Scholar 

  • Wariishi, H., Dunford, H.B., MacDonald, I.D., and Gold, M.H. (1989). Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 264, 3335–3340.

    PubMed  CAS  Google Scholar 

  • Wild, B.L. (1983). Double resistance by citrus green mould Penicillium digitatum to the fungicides guazatine and benomyl. Ann. Appl. Biol. 103, 237–241.

    Article  CAS  Google Scholar 

  • Williamson, P.R. (1994). Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans—identification as a laccase. J. Bacteriol. 176, 656–664.

    PubMed  CAS  Google Scholar 

  • Williamson, PR., Wakamatsu, K., and Ito, S. (1998). Melanin biosynthesis in Cryptococcus neoformans. J. Bacteriol. 180, 1570–15

    PubMed  CAS  Google Scholar 

  • Willmann, G. and Fakoussa, R.M. (1997). Extracellular oxidative enzymes of coal-attacking fungi. Fuel Proc. Technol. 52, 27–41.

    Article  CAS  Google Scholar 

  • Wiseman, A., Gondal, J.A., and Sims, P. (1975). 4′-Hydroxylation of biphenyl by yeast containing cytochrome P450: Radiation and thermal stability, comparisons with liver enzyme (oxidized and reduced forms). Biochem. Soc. Trans. 3, 278–281.

    PubMed  CAS  Google Scholar 

  • Wittich, R.-M. (1998a). Biodegradation of dioxins and furans. Springer-Verlag, Berlin.

    Google Scholar 

  • Wittichai, R.-M. (1998b). Degradation of dioxin-like compounds by microorganisms. Appl. Microbiol. Biotechnol. 49, 489–499.

    Article  Google Scholar 

  • Wittich, R.-M., Wilkes, H., Sinnwell, V., Francke, W., and Fortnagel, P. (1992). Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58, 1005–1010.

    PubMed  CAS  Google Scholar 

  • Wodzinski, R.J. and Ullah, A.H.J. (1996). Phytase. Adv. Appl. Microbiol. 42, 263–302.

    Article  PubMed  CAS  Google Scholar 

  • Wolfenden, R., Lu, X., and Young, G. (1998). Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120, 6814–6815.

    Article  CAS  Google Scholar 

  • Wolter, M., Zadrazil., F., Martens, R., and Bahadir, M. (1997). Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotos sp. Florida in solid wheat straw substrate. Appl. Microbiol. Biotechnol. 48, 398–404.

    Article  CAS  Google Scholar 

  • Wong, K.K.Y. and Mansfield, S.D. (1999). Enzymatic processing for pulp and paper manufacture—a review. Appita J. 52, 409–418.

    CAS  Google Scholar 

  • Xia, G., Jin C., Zhou, J., Yang, S., Zhang, S., and Jin, C. (2001). A novel chitinase having a unique mode of action from Aspergillus fumgatus YJ-407. Eur. J. Biochem. 268, 4079–4085.

    Article  PubMed  CAS  Google Scholar 

  • Xu, F. (1999). Laccase. In M.C. Flickinger and S.W. Drew (eds). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. Wiley, New York, pp. 1545–1554.

    Google Scholar 

  • Yadav, J.S., Quensen, J.F., Tiedje, J.M., and Reddy, C.A. (1995). Degradation of polychlorinated biphenyl mixtures (Aroclor-1242, Aroclor-1254 and Aroclor-1260) by the white-rot fungus Phanerochaete chrysosporium as evidence by congener-specific analysis. Appl. Environ. Microbiol. 61, 2560–2565.

    PubMed  CAS  Google Scholar 

  • Yaropolov, A.I., Kharybin, A.N., Emneus, J., Markovarga, G., and Gorton, L. (1995). Flow-injection analysis of phenols at a graphite electrode modified with co-immobilized laccase and tyrosinase. Anal Chim. Acta 308, 137–144.

    Article  CAS  Google Scholar 

  • Yaropolov, A.I., Skorobogatko, O.V., Vartanov, S.S., and Varfolomeyev, S.D. (1994). Laccase-properties, catalytic mechanism, and applicability. Appl. Biochem. Biotechnol. 49, 257–280.

    Article  CAS  Google Scholar 

  • Yaver, D.S. and Golightly, E.J. (1996). Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: Genomic organization of the laccase gene family. Gene 181, 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Yaver, D.S., Overjero, M.D., Xu, F., Nelson, B.A., Brown, K.M., Halkier, T., Bernauer, S., Brown, S.H. et al. (1999). Molecular characterization of laccase gene from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lccl. Appl. Environ. Microbiol. 65, 4943–4948.

    PubMed  CAS  Google Scholar 

  • Zeddel, A., Majcherczyk, A., and Hiittermann, A. (1993). Degradation of polychlorinated biphenyls by the whiterot fungi Pleurotos ostreatus and Trametes versicolor in a solid state system. Toxicol. Environ. Chem. 40, 255–266.

    Article  CAS  Google Scholar 

  • Zeddel, A., Majcherczyk, A., and Hiittermann, A. (1994). Degradation and mineralization of polychlorinated biphenyls by white rot fungi in solid-phase and soil incubation experiments. In R.E. Hinchee (ed.) Bioremediation of chlorinated and polychlorinated aromatic hydrocarbon compounds. Lewis Publ. Boca Raton, pp. 436–440.

    Google Scholar 

  • Zhang, S. and Williamson, P.R. (2001). Laccase gene expression in response to glucose starvation and temperature via Hsp70 and Hsf regulation. Mol. Biol. Cell 12 (Suppl. S), 1224.

    Google Scholar 

  • Zhang, Z.B., Kornegay, E.T., Radcliffe, J.S., Denbow, D.M., Veit, H.P., and Larsen, C.T. (2000a). Comparison of genetically engineered microbial and plant phytases for young broilers. Poultry Sci. 79, 709–717.

    CAS  Google Scholar 

  • Zhang, Z.B., Kornegay, E.T., Radcliffe, J.S., Wilson, J.H., and Veit, H.P. (2000b). Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J. Anim. Sci. 78, 2868–2878.

    PubMed  CAS  Google Scholar 

  • Zhao, J. and Kwan, H.S. (1999). Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl. Environ. Microbiol. 65, 4908–4913.

    PubMed  CAS  Google Scholar 

  • Zhu, X.D., Gibbons, J., Garcia-Rivera, J., Casadevall, A., and Williamson, P.R. (2001). Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect. Immun. 69, 5589–5596.

    Article  PubMed  CAS  Google Scholar 

  • Zilly, A., Souza, C.G.M., Barbosa-Tessmann, I.P., and Peralta, R.M. (2002). Decolorization of industrial dyes by a Brazilian strain of Pleurotos pulmonarius producing laccase as the sole phenol-oxidizing enzyme. Folia Microbiol. 47, 273–277.

    Article  CAS  Google Scholar 

  • Zimmermann, R. (1958). Über phenolverwertende Hefen. Naturwiss enschaften 45, 165–166.

    Article  CAS  Google Scholar 

  • Zouari, N., Romette, J.L., and Thomas, D. (1994). Laccase electrode for the continuous-flow determination of phenolic-compounds. Biotechnol. Tech. 8, 503–508.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schauer, F., Borriss, R. (2004). Biocatalysis and Biotransformation. In: Tkacz, J.S., Lange, L. (eds) Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8859-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8859-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4694-4

  • Online ISBN: 978-1-4419-8859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics