With fungi increasingly used in industry as sources of bioactive compounds and as agents to produce such compounds, it is becoming more important that fungal taxonomy be a practical discipline able to convey as much biological meaning as possible. An evolutionary approach to define fungal taxa is preferred because it is objective and provides outstanding predictive value. Traditional morphological approaches to fungal systematics are problematic owing to a lack of characters useful for grouping, and they frequently fail to provide a solid evolutionary framework, particularly at the species level. However, in the past decade new molecular and analytical tools have been developed that allow robust evolutionary inferences that can be used to define and identify fungal taxa. One or two gene sequences can be used to identify unknown fungi, often to the species level, with increasing accuracy. At the species level, a multigene phylogenetic approach is advocated to define and recognize fungal species. With this approach, species boundaries are perceived where different genes share evolutionary partitions, which serve as evidence for a lack of genetic exchange among reproductively isolated taxa. In this chapter, I will outline molecular phylogenetic approaches for addressing specific questions that arise in fungal biotechnology, from the species level upward.


Fungal Taxon Restriction Fragment Length Polymorphi Phylogenetic Species Gene Genealogy Phylogenetic Species Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulos, C.J., Blackwell, M., and Mims, C.W. (1996). Introductory Mycology. New York: Wiley & Sons.Google Scholar
  2. Boeger, J.M., Chen, R.S., and McDonald, B.A. (1993). Gene flow between geographic populations of Mycosphaerella graminicola (Anamorph Septoria tritici)—Detected with Restriction-Fragment-Length-Polymorphism Markers. Phytopathology 83, 1148–1154.CrossRefGoogle Scholar
  3. Bruns, T.D. (2001). ITS reality. Inoculum 52, 2–3.Google Scholar
  4. Bruns, T.D., White, T.J., and Taylor, J.W. (1991). Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22, 525–564.CrossRefGoogle Scholar
  5. Carbone, I., and Kohn, L.M. (2001). A microbial population-species interface: Nested cladistic and coalescent inference with multilocus data. Molecular Ecology 10, 947–964.PubMedCrossRefGoogle Scholar
  6. Chaverri, P.C., Castlebury, L.A., Samuels, G.J., and Geiser, D.M. (2003). Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phyl. Evol. 27, 302–313.CrossRefGoogle Scholar
  7. Cracraft, J. (1983). Species concepts and speciation analysis. Current Ornithology 1, 159–187.Google Scholar
  8. Eriksson, O.E., Baral, H.-O., Curran, R.S., Hansen, K., Kurtzmann, C.P., Rambold, G., and Laessøe, T. (2001). Outline of Ascomycota—2001. Myconet 7, 1–88.Google Scholar
  9. Geiser, D.M., Arnold, M.L., and Timberlake, W.E. (1994). Sexual origins of British Aspergillus nidulans isolates. Proc. Natl. Acad. Sci. U.S.A. 91, 2349–2352.PubMedCrossRefGoogle Scholar
  10. Geiser, D.M., Pitt, J.I., and Taylor, J.W. (1998). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc. Natl. Acad. Sci. U.S.A. 95, 388–393.PubMedCrossRefGoogle Scholar
  11. Hamer, J.E. (1991). Molecular probes for rice blast disease. Science 252, 632–633.PubMedCrossRefGoogle Scholar
  12. Hawksworth, D.L. (2001). The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 105, 1422–1432.CrossRefGoogle Scholar
  13. Hey, J. (2001). Genes, categories and species: The evolutionary and cognitive causes of the species problem. Oxford, UK: Oxford University Press.Google Scholar
  14. Horton, T.R., and Bruns, T.D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molec. Ecol. 10, 1855–1871.CrossRefGoogle Scholar
  15. James, T.Y., Porter, D., Leander, C.A., Vilgalys, R., and Longcore, J.E. (2000). Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Can. J. Bot.-Revue Canadienne De Botanique 78, 336—350.Google Scholar
  16. Kang, S.C., Ayers, J.E., DeWolf, E.D., Geiser, D.M., Kuldau, G., Moorman, G.W., Mullins, E., Uddin, W., Correll, J.C., Deckert, G., Lee, Y.H., Lee, Y.W., Martin, F.N., and Subbarao, K. (2002). The internet-based fungal pathogen database: A proposed model. Phytopathology 92, 232–236.PubMedCrossRefGoogle Scholar
  17. Kirk, P.M., David, J.C., and Stalpers, J.A. (2001). Ainsworth & Bisby’s Dictionary of the Fungi (9th ed.). Wallingford, UK: CAB International.Google Scholar
  18. Kohli, Y., Brunner, L.J., Yoell, H., Milgroom, M.G., Anderson, J.B., Morrall, R.A.A., and Kohn, L.M. (1995). Clonal dispersal and spatial mixing in populations of the plant-pathogenic fungus, Sclerotinia sclerotiorum. Molec. Ecol. 4, 69–77.CrossRefGoogle Scholar
  19. Koufopanou, V., Burt, A., and Taylor, J.W. (1997). Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc. Natl. Acad. Sci. U.S.A. 94, 5478–5482.PubMedCrossRefGoogle Scholar
  20. Kretzer, A.M., and Bruns, T.D. (1999). Use of atp6 in fungal phylogenetics: An example from the Boletales. Mol. Phylogenet. Evol. 13, 483–492.PubMedCrossRefGoogle Scholar
  21. Leslie, J.F., Zeller, K.A., and Summerell, B.A. (2001). Icebergs and species in populations of Fusarium. Phys. Mo. Plant Path. 59, 107–117.CrossRefGoogle Scholar
  22. Liu, Y.J.J., Whelen, S., and Benjamin, D.H. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evolution 16, 1799–1808.CrossRefGoogle Scholar
  23. Mayr, E. (1940). Speciation phenomena in birds. Amer. Naturalist 74, 249–278.CrossRefGoogle Scholar
  24. O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92, 919–938.CrossRefGoogle Scholar
  25. O’Donnell, K., and Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7, 103–116.PubMedCrossRefGoogle Scholar
  26. O’Donnell, K., Cigelnik, E., and Nirenberg, H.I. (1998a). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–493.CrossRefGoogle Scholar
  27. O’Donnell, K., Kistler, H.C., Cigelnik, E., and Ploetz, R.C. (1998b). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Nat. Acad. Sci. U.S.A. 95, 2044–2049.CrossRefGoogle Scholar
  28. O’Donnell, K., Kistler, H.C., Tacke, B.K., and Casper, H.H. (2000). Gene genealogies reveal global phylogeo-graphic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Nat. Acad. Sci. U.S.A. 97, 7905–7910.CrossRefGoogle Scholar
  29. Rassmann, K., Schlotterer, C., and Tautz, D. (1991). Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis 12, 113–118.PubMedCrossRefGoogle Scholar
  30. Schussler, A., Schwarzott, D., and Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 105, 1413–1421.CrossRefGoogle Scholar
  31. Taylor, J.W., Jacobson, D.J., and Fisher, M.C. (1999). The evolution of asexual fungi: Reproduction, speciation and classification. Annu. Rev. Phytopath. 37, 197–246.CrossRefGoogle Scholar
  32. Taylor, J.W., Jacobson, D.J., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S., and Fisher, M.C. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31, 21–32.PubMedCrossRefGoogle Scholar
  33. Tsai, H.F., Liu, J.S., Staben, C., Christensen, M.J., Latch, G.C.M., Siegel, M.R., and Schardl, C.L. (1994). Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichlöe species. Proc. Nat. Acad. Sci. U.S.A. 91, 2542–2546.CrossRefGoogle Scholar
  34. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. (1995). AFLP—a new technique for DNA-fingerprinting. Nucl. Acids Res. 23, 4407–4414.PubMedCrossRefGoogle Scholar
  35. White, T.J., Bruns, T.D., Lee, S., and Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, D. Gelfand, J. Sninsky, and T.J. White (eds) PCR Protocols: A guide to methods and applications (Chapter 38). Orlando, FL: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • David M. Geiser
    • 1
  1. 1.Department of Plant PathologyThe Pennsylvania State UniversityUniversity ParkPennsylvania

Personalised recommendations