Skip to main content

Abstract

With fungi increasingly used in industry as sources of bioactive compounds and as agents to produce such compounds, it is becoming more important that fungal taxonomy be a practical discipline able to convey as much biological meaning as possible. An evolutionary approach to define fungal taxa is preferred because it is objective and provides outstanding predictive value. Traditional morphological approaches to fungal systematics are problematic owing to a lack of characters useful for grouping, and they frequently fail to provide a solid evolutionary framework, particularly at the species level. However, in the past decade new molecular and analytical tools have been developed that allow robust evolutionary inferences that can be used to define and identify fungal taxa. One or two gene sequences can be used to identify unknown fungi, often to the species level, with increasing accuracy. At the species level, a multigene phylogenetic approach is advocated to define and recognize fungal species. With this approach, species boundaries are perceived where different genes share evolutionary partitions, which serve as evidence for a lack of genetic exchange among reproductively isolated taxa. In this chapter, I will outline molecular phylogenetic approaches for addressing specific questions that arise in fungal biotechnology, from the species level upward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulos, C.J., Blackwell, M., and Mims, C.W. (1996). Introductory Mycology. New York: Wiley & Sons.

    Google Scholar 

  • Boeger, J.M., Chen, R.S., and McDonald, B.A. (1993). Gene flow between geographic populations of Mycosphaerella graminicola (Anamorph Septoria tritici)—Detected with Restriction-Fragment-Length-Polymorphism Markers. Phytopathology 83, 1148–1154.

    Article  CAS  Google Scholar 

  • Bruns, T.D. (2001). ITS reality. Inoculum 52, 2–3.

    Google Scholar 

  • Bruns, T.D., White, T.J., and Taylor, J.W. (1991). Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22, 525–564.

    Article  Google Scholar 

  • Carbone, I., and Kohn, L.M. (2001). A microbial population-species interface: Nested cladistic and coalescent inference with multilocus data. Molecular Ecology 10, 947–964.

    Article  PubMed  CAS  Google Scholar 

  • Chaverri, P.C., Castlebury, L.A., Samuels, G.J., and Geiser, D.M. (2003). Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phyl. Evol. 27, 302–313.

    Article  CAS  Google Scholar 

  • Cracraft, J. (1983). Species concepts and speciation analysis. Current Ornithology 1, 159–187.

    Google Scholar 

  • Eriksson, O.E., Baral, H.-O., Curran, R.S., Hansen, K., Kurtzmann, C.P., Rambold, G., and Laessøe, T. (2001). Outline of Ascomycota—2001. Myconet 7, 1–88.

    Google Scholar 

  • Geiser, D.M., Arnold, M.L., and Timberlake, W.E. (1994). Sexual origins of British Aspergillus nidulans isolates. Proc. Natl. Acad. Sci. U.S.A. 91, 2349–2352.

    Article  PubMed  CAS  Google Scholar 

  • Geiser, D.M., Pitt, J.I., and Taylor, J.W. (1998). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc. Natl. Acad. Sci. U.S.A. 95, 388–393.

    Article  PubMed  CAS  Google Scholar 

  • Hamer, J.E. (1991). Molecular probes for rice blast disease. Science 252, 632–633.

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth, D.L. (2001). The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 105, 1422–1432.

    Article  Google Scholar 

  • Hey, J. (2001). Genes, categories and species: The evolutionary and cognitive causes of the species problem. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Horton, T.R., and Bruns, T.D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molec. Ecol. 10, 1855–1871.

    Article  CAS  Google Scholar 

  • James, T.Y., Porter, D., Leander, C.A., Vilgalys, R., and Longcore, J.E. (2000). Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Can. J. Bot.-Revue Canadienne De Botanique 78, 336—350.

    Google Scholar 

  • Kang, S.C., Ayers, J.E., DeWolf, E.D., Geiser, D.M., Kuldau, G., Moorman, G.W., Mullins, E., Uddin, W., Correll, J.C., Deckert, G., Lee, Y.H., Lee, Y.W., Martin, F.N., and Subbarao, K. (2002). The internet-based fungal pathogen database: A proposed model. Phytopathology 92, 232–236.

    Article  PubMed  Google Scholar 

  • Kirk, P.M., David, J.C., and Stalpers, J.A. (2001). Ainsworth & Bisby’s Dictionary of the Fungi (9th ed.). Wallingford, UK: CAB International.

    Google Scholar 

  • Kohli, Y., Brunner, L.J., Yoell, H., Milgroom, M.G., Anderson, J.B., Morrall, R.A.A., and Kohn, L.M. (1995). Clonal dispersal and spatial mixing in populations of the plant-pathogenic fungus, Sclerotinia sclerotiorum. Molec. Ecol. 4, 69–77.

    Article  Google Scholar 

  • Koufopanou, V., Burt, A., and Taylor, J.W. (1997). Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc. Natl. Acad. Sci. U.S.A. 94, 5478–5482.

    Article  PubMed  CAS  Google Scholar 

  • Kretzer, A.M., and Bruns, T.D. (1999). Use of atp6 in fungal phylogenetics: An example from the Boletales. Mol. Phylogenet. Evol. 13, 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Leslie, J.F., Zeller, K.A., and Summerell, B.A. (2001). Icebergs and species in populations of Fusarium. Phys. Mo. Plant Path. 59, 107–117.

    Article  Google Scholar 

  • Liu, Y.J.J., Whelen, S., and Benjamin, D.H. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evolution 16, 1799–1808.

    Article  CAS  Google Scholar 

  • Mayr, E. (1940). Speciation phenomena in birds. Amer. Naturalist 74, 249–278.

    Article  Google Scholar 

  • O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92, 919–938.

    Article  Google Scholar 

  • O’Donnell, K., and Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7, 103–116.

    Article  PubMed  Google Scholar 

  • O’Donnell, K., Cigelnik, E., and Nirenberg, H.I. (1998a). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–493.

    Article  Google Scholar 

  • O’Donnell, K., Kistler, H.C., Cigelnik, E., and Ploetz, R.C. (1998b). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Nat. Acad. Sci. U.S.A. 95, 2044–2049.

    Article  Google Scholar 

  • O’Donnell, K., Kistler, H.C., Tacke, B.K., and Casper, H.H. (2000). Gene genealogies reveal global phylogeo-graphic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Nat. Acad. Sci. U.S.A. 97, 7905–7910.

    Article  Google Scholar 

  • Rassmann, K., Schlotterer, C., and Tautz, D. (1991). Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis 12, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Schussler, A., Schwarzott, D., and Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 105, 1413–1421.

    Article  Google Scholar 

  • Taylor, J.W., Jacobson, D.J., and Fisher, M.C. (1999). The evolution of asexual fungi: Reproduction, speciation and classification. Annu. Rev. Phytopath. 37, 197–246.

    Article  CAS  Google Scholar 

  • Taylor, J.W., Jacobson, D.J., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S., and Fisher, M.C. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, H.F., Liu, J.S., Staben, C., Christensen, M.J., Latch, G.C.M., Siegel, M.R., and Schardl, C.L. (1994). Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichlöe species. Proc. Nat. Acad. Sci. U.S.A. 91, 2542–2546.

    Article  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. (1995). AFLP—a new technique for DNA-fingerprinting. Nucl. Acids Res. 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • White, T.J., Bruns, T.D., Lee, S., and Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, D. Gelfand, J. Sninsky, and T.J. White (eds) PCR Protocols: A guide to methods and applications (Chapter 38). Orlando, FL: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geiser, D.M. (2004). Practical Molecular Taxonomy of Fungi. In: Tkacz, J.S., Lange, L. (eds) Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8859-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8859-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4694-4

  • Online ISBN: 978-1-4419-8859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics