Gain Mechanism in TiO2 MSM Ultraviolet Detector

  • Min Zhang
  • Shengping Ruan
  • Haifeng Zhang
  • Pengfei Qu
  • Lihua Chen
  • Kuixue Liu
  • Jingran Zhou
  • Liang Shen
Conference paper

Abstract

In this chapter, we discuss about the gain mechanism in TiO2-based metal-semiconductor-metal (MSM) ultraviolet photodetector (PD). A model was invoked to evaluate the trapping density and got the value to be 6.8×1011/cm2 for the fabricated MSM-PD with Au Schottky contact. A high photoresponsivity of 200 A/W was achieved when our device was irradiated by the ultraviolet light with power density of 6.1 µw/cm2(260 nm) at 5 V applied bias. Correspondingly, the gain was huge. We attribute the gain to the lowering of the Schottky barrier height due to the surface states and the image force effect. An excellent agreement is achieved between the calculated and experimental photoresponsivity, the latter is simulated by the MATLAB software.

Keywords

TiO2 film Photovoltaic UV detector MSM Gain 

Notes

Acknowledgments

The authors are grateful to the China 863 Program (Grant No. 2009AA032402), National Natural Science Foundation of China (Grant Nos. 60977031, 61007022, 61006013), and Doctoral Found of Ministry of Education of China (20090061110040) for the support extended to this work.

References

  1. 1.
    Yasuo Chiba, Ashraful Islam, Ryoichi Komiya, Naoki Koide, and Liyuan Han. Appl. Phys. Lett. 88, 223505 (2006)Google Scholar
  2. 2.
    N. Kopidakis, N. R. Neale, K. Zhu, J. van de Lagemaat, and A. J. Frank. Appl. Phys. Lett. 87, 202106 (2005)Google Scholar
  3. 3.
    Chun-Guey Wu, Chia-Cheng Chao, and Fang-Ting Kuo. Catal. Today. 97, 103 (2004)Google Scholar
  4. 4.
    Kenta Yoshida, Jun Yamasaki, and Nobuo Tanaka. Appl. Phys. Lett. 84, 2542 (2004)Google Scholar
  5. 5.
    M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, G. C. Chi, and J. M. Tsa. J. Appl. Phys. 94, 1753 (2003)Google Scholar
  6. 6.
    S. J. Chang, C. L. Yu, C. H. Chen, P. C. Chang, and K. C. Huang. J. Vac. Sci. Technol. A. 24, 3 (2006)Google Scholar
  7. 7.
    Nuri W. Emanetoglu, Jun Zhu, Ying Chen, Jian Zhong, Yimin Chen, and Yicheng Lu. Appl. Phys. Lett. 85, 3702 (2004)Google Scholar
  8. 8.
    S. Liang, H. Shenga, Y. Liua, Z. Huoa, Y. Lua, and H. Shen. J. Cryst. Growth. 225, 110 (2001)Google Scholar
  9. 9.
    A. Balducci, Marco Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon. Appl. Phys. Lett. 86, 193509 (2005)Google Scholar
  10. 10.
    Masayuki Okuya, Katsuyuki Shiozaki, Nobuyuki Horikawa, Tsuyoshi Kosugi, G. R. Asoka Kumara, János Madarász, Shoji Kaneko, and GyörgyPokol. Solid State Ionics. 172, 527 (2004)Google Scholar
  11. 11.
    S. M. Sze, D. J. Coleman: Current transport in metal-semiconductor-metal (MSM) structures. Solid-State Electrons. 14, 1209–1218 (1971)CrossRefGoogle Scholar
  12. 12.
    O. Katz, V. Garber, G. Bahir, and J. Salzman: Gain mechanism in GaN Schottky ultraviolet detectors. Appl Phys Lett. 79(10), 1417–1419 (2001)Google Scholar
  13. 13.
    O. Katz, G. Bahir, and J. Salzman: Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl Phys Lett. 84, 223505 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Min Zhang
    • 1
  • Shengping Ruan
    • 1
  • Haifeng Zhang
    • 1
  • Pengfei Qu
    • 1
  • Lihua Chen
    • 1
  • Kuixue Liu
    • 1
  • Jingran Zhou
    • 1
  • Liang Shen
    • 1
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations