Skip to main content

Abstract

The application framework of the presented research work is stablished in the area of the low-power portable stand-alone devices. Considering as a paradigm application the implementation of future portable terminals for telecommunications, two opposed trends coexist that determine the need for an optimized energy management. An important increase in power consumption is expected in future battery operated terminals, specially for the third and fourth generation systems (3G, 4G), due to the increasing demand in their functionalities, extended towards audiovisual communication and a much higher multimedia data flow (the last issue could also be referred to the personal audio players). In addition to this, other low-power stand-alone devices, such as the telemetric sensing devices and wireless sensor networks motes, should be the application target of the herein presented work. Microsystems and nanoelectronic circuits power supply fit this category as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wikipedia. Rechargeable battery. http://en.wikipedia.org/wiki/Rechargeable_battery#Comparison_of_battery_types.

  2. MPower. Custom power solutions. http://www.mpoweruk.com.

  3. UMC. http://www.umc.com.

  4. International Technology Roadmap for Semiconductors. http://www.itrs.net.

  5. M. Kazimierczuk. Collector amplitude modulation of the class e tuned power amplifier. IEEE Transactions on Circuits and Systems, 31(6):543–549, June 1984.

    Article  Google Scholar 

  6. G. Hanington, Pin-Fan Chen, P. M. Asbeck, and L. E. Larson. High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. IEEE Transactions on Microwave Theory and Techniques, 47(8):1471–1476, August 1999.

    Article  Google Scholar 

  7. V. Yousefzadeh, Narisi Wang, Z. Popovic, and D. Maksimovic. A digitally controlled DC/DC converter for an RF power amplifier. IEEE Transactions on Power Electronics, 21(1): 164–172, January 2006.

    Article  Google Scholar 

  8. P. Midya, K. Haddad, L. Connell, S. Bergstedt, and B. Roeckner. Tracking power converter for supply modulation of RF power amplifiers. In Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, volume 3, pages 1540–1545, Vancouver, BC, June 2001.

    Google Scholar 

  9. G. Konduri, J. Goodman, and A. Chandrakasan. Energy efficient software through dynamic voltage scheduling. In Circuits and Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE International Symposium on, volume 1, pages 358–361, Orlando, FL, May/June 1999.

    Google Scholar 

  10. M. Bhardwaj, R. Min, and A. P. Chandrakasan. Quantifying and enhancing power awareness of VLSI systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(6):757–772, December 2001.

    Article  Google Scholar 

  11. T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama. Variable supply-voltage scheme for low-power high-speed CMOS digital design. In Solid-State Circuits, IEEE Journal of, volume 33, pages 454–462, Santa Clara, CA, March 1998.

    Google Scholar 

  12. M. Miyazaki, J. Kao, and A. P. Chandrakasan. A 175 mv multiply-accumulate unit using an adaptive supply voltage and body bias (ASB) architecture. In Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International, volume 2, pages 40–391, February 2002.

    Google Scholar 

  13. S. Dhar and D. Maksimovic. Switching regulator with dynamically adjustable supply voltage for low power VLSI. In Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Conference of the IEEE, volume 3, pages 1874–1879, Denver, CO, November/December 2001.

    Google Scholar 

  14. T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen. A dynamic voltage scaled microprocessor system. In Solid-State Circuits, IEEE Journal of, volume 35, pages 1571–1580, San Francisco, CA, November 2000.

    Google Scholar 

  15. Dongpo Chen, Lenian He, and Xiaolang Yan. A low-dropout regulator with unconditional stability and low quiescent current. In Communications, Circuits and Systems Proceedings, 2006 International Conference on, volume 4, pages 2215–2218, Guilin, June 2006.

    Google Scholar 

  16. G. A. Rincon-Mora and P. E. Allen. A low-voltage, low quiescent current, low drop-out regulator. IEEE Journal of Solid-State Circuits, 33(1):36–44, January 1998.

    Article  Google Scholar 

  17. C. K. Tse, S. C. Wong, and M. H. L. Chow. On lossless switched-capacitor power converters. IEEE Transactions on Power Electronics, 10(3):286–291, May 1995.

    Article  Google Scholar 

  18. A. Ioinovici. Switched-capacitor power electronics circuits. IEEE Circuits and Systems Magazine, 1(3):37–42, 2001.

    Article  Google Scholar 

  19. D. Maksimovic and S. Dhar. Switched-capacitor DC-DC converters for low-power on-chip applications. In Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE, volume 1, pages 54–59, Charleston, SC, June/July 1999.

    Google Scholar 

  20. B. Arntzen and D. Maksimovic. Switched-capacitor DC/DC converters with resonant gate drive. IEEE Transactions on Power Electronics, 13(5):892–902, September 1998.

    Article  Google Scholar 

  21. M. S. Makowski and D. Maksimovic. Performance limits of switched-capacitor DC-DC converters. In Power Electronics Specialists Conference, 1995. PESC ’95 Record., 26th Annual IEEE, volume 2, pages 1215–1221, Atlanta, GA, June 1995.

    Google Scholar 

  22. B. Arbetter and D. Maksimovic. DC-DC converter with fast transient response and high efficiency for low-voltage microprocessor loads. In Applied Power Electronics Conference and Exposition, 1998. APEC ’98. Conference Proceedings 1998., 13th Annual, volume 1, pages 156–162, Anaheim, CA, February 1998.

    Google Scholar 

  23. R. W. Erickson and D. Maksimovic. Fundamentals of power electronics. Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  24. B. Arbetter and D. Maksimovic. Control method for low-voltage DC power supply in battery-powered systems with power management. In Power Electronics Specialists Conference, 1997. PESC ’97 Record., 28th Annual IEEE, volume 2, pages 1198–1204, St. Louis, MO, June 1997.

    Google Scholar 

  25. B. Arbetter, R. Erickson, and D. Maksimovic. DC-DC converter design for battery-operated systems. In Power Electronics Specialists Conference, 1995. PESC ’95 Record., 26th Annual IEEE, volume 1, pages 103–109, Atlanta, GA, June 1995.

    Google Scholar 

  26. Cheung Fai Lee and P. K. T. Mok. A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE Journal of Solid-State Circuits, 39(1):3–14, January 2004.

    Article  Google Scholar 

  27. I. Furukawa and Y. Sugimoto. A synchronous, step-down from 3.6 V to 1.0 V, 1 MHz PWM CMOS DC/DC converter. In Solid-State Circuits Conference, 2001. ESSCIRC 2001. Proceedings of the 27th European, pages 69–72, September 2001.

    Google Scholar 

  28. S. K. Reynolds. A DC-DC converter for short-channel CMOS technologies. IEEE Journal of Solid-State Circuits, 32(1):111–113, January 1997.

    Article  Google Scholar 

  29. S. Sakiyama, J. Kajiwara, M. Kinoshita, K. Satomi, K. Ohtani, and A. Matsuzawa. An on-chip high-efficiency and low-noise DC/DC converter using divided switches with current control technique. In Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International, pages 156–157, San Francisco, CA, February 1999.

    Google Scholar 

  30. Won Namgoong, Mengchen Yu, and Teresa Meng. A high-efficiency variable-voltage CMOS dynamic DC-DC switching regulator. In Solid-State Circuits Conference, 1997. Digest of Technical Papers. 44th ISSCC., 1997 IEEE International, pages 380–381, San Francisco, CA, February 1997.

    Google Scholar 

  31. V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman. Analysis of buck converters for on-chip integration with a dual supply voltage microprocessor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(3):514–522, June 2003.

    Article  Google Scholar 

  32. V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman. Low-voltage-swing monolithic dc-dc conversion. Circuits and Systems II: Express Briefs, IEEE Transactions on [see also Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on], 51(5):241–248, May 2004.

    Google Scholar 

  33. V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman. High input voltage step-down DC-DC converters for integration in a low voltage CMOS process. In Quality Electronic Design, 2004. Proceedings. 5th International Symposium on, pages 517–521, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Villar Piqué .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Villar Piqué, G., Alarcón, E. (2011). Introduction. In: CMOS Integrated Switching Power Converters. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8843-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8843-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8842-3

  • Online ISBN: 978-1-4419-8843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics