Empirical Assessments of Invariance

  • Mario NegrelloEmail author
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 1)


The search for invariances outlined in the previous chapter is taken further with the analysis of empirical methods of behavioral invariance in the study of the mammalian brain. These methods are the bread and butter of the neuroscientist and cognitive neuroscientist: electrophysiology, functional magnetic resonance imaging, and diffusion tensor imaging all search for measurable invariances that may illuminate function and mechanism. This is a simple task as all these methods have inherent particularities, of both empirical and epistemological nature. A clear view on these issues is essential as they have strong bearing on the conclusions about the results of experiments, and by extension on the mechanisms of behavior.


Diffusion Tensor Imaging Independent Component Analysis Granger Causality Independent Component Analysis Mirror Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adolphs R (1999) Social cognition and the human brain. Trends Cogn Sci 3(12):469–479PubMedCrossRefGoogle Scholar
  2. 2.
    Basar E, Basar-Eroglu C, Korokos S, Schrürmann M (1999) Oscillatory brain theory: A new trend in neuroscience IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society, 18(3):56–66Google Scholar
  3. 3.
    Batterman R (2000) Multiple realizability and universality. Br J Philos Sci 51(1):115–145CrossRefGoogle Scholar
  4. 4.
    Carman G, Drury H, Van Essen D (1995) Computational methods for reconstructing and unfolding the cerebral cortex. Cerebr Cortex 5(6):506–517CrossRefGoogle Scholar
  5. 5.
    Decety J, Grèzes J (2006) The power of simulation: Imagining one’s own and other’s behavior. Brain Res 1079(1):4–14PubMedCrossRefGoogle Scholar
  6. 6.
    Deschamps M, Kervern G, Massiot D, Pintacuda G, Emsley L, Grandinetti P (2008) Superadiabaticity in magnetic resonance. J Chem Phy 129:204,110Google Scholar
  7. 7.
    Ding M, Chen Y, Bressler S (2006) Granger causality: Basic theory and application to neuroscience. Arxiv preprint q-bio/0608035Google Scholar
  8. 8.
    Douglas R, Martin K (1995) Vibrations in the memory. Nature 373(6515):563–564PubMedCrossRefGoogle Scholar
  9. 9.
    Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck H (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol Cybern 60(2):121–130PubMedCrossRefGoogle Scholar
  10. 10.
    Edelman GM (1987) Neural darwinism. Basic Books, New YorkGoogle Scholar
  11. 11.
    Frank LM, Brown E, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178PubMedCrossRefGoogle Scholar
  12. 12.
    Freeman W, Baird B (1989) Effects of applied electric current fields on cortical neural activity. Computational Neuroscience, New York, Plenum PressGoogle Scholar
  13. 13.
    Freeman WJ (1995) Society of Brains: A study in the neuroscience of love and hate. Laurence Erlbaum Associates Inc, Hillsdale, NJGoogle Scholar
  14. 14.
    Gallese V, Fadiga L, Fogassi L, Rizzolati G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRefGoogle Scholar
  15. 15.
    Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12(5):711–720PubMedCrossRefGoogle Scholar
  16. 16.
    Hadjikhani N, Liu A, Dale A, Cavanagh P, Tootell R (1998) Retinotopy and color sensitivity in human visual cortical area V 8. Nat Neurosci 1(3):235–241PubMedCrossRefGoogle Scholar
  17. 17.
    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, Wedeen V, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159PubMedCrossRefGoogle Scholar
  18. 18.
    Haynes J, Rees G (2005a) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691PubMedCrossRefGoogle Scholar
  19. 19.
    Haynes J, Rees G (2005b) Predicting the stream of consciousness from activity in human visual cortex. Curr Biol 15(14):1301–1307PubMedCrossRefGoogle Scholar
  20. 20.
    Haynes J, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7(7):523–534PubMedCrossRefGoogle Scholar
  21. 21.
    Haynes J, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438:496–499PubMedCrossRefGoogle Scholar
  22. 22.
    Haynes J, Sakai K, Rees G, Gilbert S, Frith C, Passingham R (2007) Reading hidden intentions in the human brain. Curr Biol 17(4):323–328PubMedCrossRefGoogle Scholar
  23. 23.
    Hyvärinen A, Oja E (2000) Independent component analysis: Algorithms and applications. Neural Netw 13(4–5):411–430PubMedCrossRefGoogle Scholar
  24. 24.
    Jeffery KJ, Burgess N (2006) A metric for the cognitive map: Found at last? Trends Cogn Sci 10(1)Google Scholar
  25. 25.
    Livet J, Weissman T, Kang H, Draft R, Lu J, Bennis R, Sanes J, Lichtman J (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62PubMedCrossRefGoogle Scholar
  26. 26.
    Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971PubMedGoogle Scholar
  27. 27.
    Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878PubMedCrossRefGoogle Scholar
  28. 28.
    Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531PubMedCrossRefGoogle Scholar
  29. 29.
    Molnár G, Oláh S, Komlósi G, Füle M, Szabadics J, Varga C, Barzó P, Tamás G (2008) Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex. PLoS Biol 6(9):e222PubMedCrossRefGoogle Scholar
  30. 30.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539PubMedCrossRefGoogle Scholar
  31. 31.
    Newberg A, Newberg S (2005) The neuropsychology of religious and spiritual experience. Handbook of the psychology of religion and spirituality. pp 199–215Google Scholar
  32. 32.
    O’Keefe J, Dostrovsky J (1971) The hippocampus as spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Research 34:171–175PubMedCrossRefGoogle Scholar
  33. 33.
    Panksepp J (1998) Affective Neuroscience, Oxford UP, chap The Varieties of emotional systems in the brain, pp 41–58Google Scholar
  34. 34.
    Peigneux P, Orban P, Balteau E, Degueldre C, Luxen A, Laureys S, Maquet P (2006) Offline persistence of memory-related cerebral activity during active wakefulness. PLOS Biology 4(4)Google Scholar
  35. 35.
    Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238PubMedCrossRefGoogle Scholar
  36. 36.
    Preissl H, Pulvermüller F, Lutzenberger W, Birbaumer N (1995) Evoked potentials distinguish between nouns and verbs. Neuroscience Letters 197(1):81–83PubMedCrossRefGoogle Scholar
  37. 37.
    Pulvermüller F (2001) Brain reflections of words and their meaning. Trends in Cognitive Sciences 5(12):517–524PubMedCrossRefGoogle Scholar
  38. 38.
    Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435(7045):1102–1107PubMedCrossRefGoogle Scholar
  39. 39.
    Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3(2):131–141PubMedCrossRefGoogle Scholar
  40. 40.
    Skaggs W, McNaughton B, Wilson M, Barnes C (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2)Google Scholar
  41. 41.
    Sporns O, Honey C (2006) Small worlds inside big brains. Proceedings of the National Academy of Sciences 103(51):19,219Google Scholar
  42. 42.
    Sporns O, Honey C, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10)Google Scholar
  43. 43.
    Sutton S, Braren M, Zubin J, John E (1965) Evoked-Potential Correlates of Stimulus Uncertainty. Science 150(3700):1187–1188PubMedCrossRefGoogle Scholar
  44. 44.
    Varela F, Toro A, John E, Schwartz E (1981) Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5):675–86PubMedCrossRefGoogle Scholar
  45. 45.
    Varela F, Lachaux J, Rodriguez E, Martinerie J, et al (2001) The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience 2(4):229–239PubMedCrossRefGoogle Scholar
  46. 46.
    Vul E, Harris C, Winkielman P, Pashler H (2009 (to appear)) Voodoo correlations in social neuroscience. Perspectives on Psychological ScienceGoogle Scholar
  47. 47.
    Watts D, Strogatz S (1998) Small world. Nature 393:440–442PubMedCrossRefGoogle Scholar
  48. 48.
    Wedeen V, Hagmann P, Tseng W, Reese T, Weisskoff R (2005) Mapping Complex Tissue Architecture With Diffusion Spectrum Magnetic Resonance Imaging. Magnetic Resonance in Medicine 54(6):1377PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Okinawa Institute of Science and TechnologyOkinawaJapan

Personalised recommendations