Skip to main content

Acoustical Tissue Images for Detection of Atherosclerotic Changes in Blood Vessels

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 22))

Abstract

Recent developments of intravascular ultrasound (IVUS) offer some new features for the detection and quantification of vascular disease which are very valuable for clinical diagnosis. Making possible visualization of the full circumference of the vessel, IVUS allows the inspection of lumen and plaque shape by one single tomogram. Such views are successfully used for planimetry to overcome special problems such as bifurcations or overlapping vessels. In addition, IVUS is used to obtain plaque thickness and echogenicity for determination of its area and composition. It is established that intravascular ultrasonic imaging provides best results in quantifying atherosclerotic changes in vessels1,2. Decisions for optimal treatment are usually made in terms of grey scaled video images, which are processed from the amplitude of ultrasonic echo signals. However, there is much more information in radio-frequency (RF) echo signal which should be used for tissue characterization and identification3as well as special experiences in soft tissue classification4,5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.E. Nissen, J.C. Gurley, D.C. Booth, and A.N. DeMaria, Intravascular ultrasound of the coronary arteries: current applications and future directions, Am J Cardiol 69:18H–29H (1992)

    Article  Google Scholar 

  2. J.F. Benenati, Intravascular ultrasound: the role in diagnostics and therapeutic procedures, Radiol. Clin. North America 33; 31–50 (1995)

    Google Scholar 

  3. D.T. Linker, A. Kleven, A. Gronningsaeter, P.G. Yock, and B.A.J. Angelsen, Tissue characterization with intra-arterial ultrasound: special promise and problems, Int. J. of Cardiac Imag. 6: 225–263 (1991)

    Google Scholar 

  4. J.A. Jensen, A model for propagation and scattering of ultrasound in tissue, JASA 89:182–190 (1991)

    Article  Google Scholar 

  5. M. Lang, H. Ermert, and L. Heuser, In vivo study of online liver tissue classification based on envelope power spectrum analysis, Ultrasonic Imaging 16:77–86 (1994)

    Google Scholar 

  6. R. Ross, The pathogenesis of atherosclerosis — an update; The New England J. of Med. 314:488–500 (1986)

    Article  Google Scholar 

  7. J. Honye, D.J. Mahon, A. Jain, C.J. White, S.R. Ramee, J.B. Wallis, A. Al-Zarka, and J.M. Tobis, Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging, Circulation 85:1012–1025 (1992)

    Article  Google Scholar 

  8. T.A.C.M. Claasen and W.F.G. Mecklenbräuker, The Wigner distribution — a tool for time-frequency signal analysis, Philips Journ. Res. 35:217–250(I), 276-300(II), 372-389 (III) (1980)

    Google Scholar 

  9. B. Boashash, Note on the use of the Wigner distribution for time-frequency signal analysis; IEEE Trans. ASSP 36:1518–1521 (1988)

    Article  MATH  Google Scholar 

  10. O. Skerl, and I. Hartmann, The Wigner distribution in Doppler sonography, Acoust. Imag. 19:335–339 (1992)

    Article  Google Scholar 

  11. O. Skerl, W. Schmidt, and O. Specht, Wigner-Verteilung als Werkzeug zur Zeit-Frequenz-Analyse nichtstationärer Signale; Technisches Messen 61:7–15(1994)

    Google Scholar 

  12. L.S. Wilson, M.L. Neale, H.E. Talhami, and M. Appleberg, Preliminary results from attenuation-slope mapping of plaque using intravascular ultrasound; Ultrasound in Med. & Biol. 20:529–542 (1994)

    Article  Google Scholar 

  13. D. Werner, D. Behrend, M. Schröder., K.-P. Schmitz, and W. Urbaszek, Interaktionen zwischen PTCA-Ballon und Koronarstenose beim Dilatationsprozeß — eine rasterelektronenmikroskopische und röntgenmikroanalytische Untersuchung, Biomedizinische Technik 39:91–92 (1994)

    Article  Google Scholar 

  14. D. Werner, D. Behrend, K.-P. Schmitz, W. Urbaszek, Impression koronarer Plaquepartikel in die PTCA-Ballonoberfläche durch den Dilatationsprozeß, Z. Kardiol. 84: 377–384 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, W., Behrend, D., Skerl, O., Martin, H., Urbaszek, W., Schmitz, KP. (1996). Acoustical Tissue Images for Detection of Atherosclerotic Changes in Blood Vessels. In: Tortoli, P., Masotti, L. (eds) Acoustical Imaging. Acoustical Imaging, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8772-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8772-3_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4687-6

  • Online ISBN: 978-1-4419-8772-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics