Skip to main content

Simulation of Acoustic Wave Propagation Within Flowing Media Using Simplified Boundary Element Techniques

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 22))

Abstract

The development of a novel ultrasonic gas meter1 for household applications demonstrated that ultrasound technique can be a very precise and cost effective method for flow meters. Fig. 1 shows the basic principle of an ultrasound meter based on the delay time measurement principle. The time of flight between the two transducers positioned along the flow channel is influenced by the mean flow along the measurement path. The mean flow rate can be calculated as

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jena, A.v.; Mágori, V. Rußwurm, W.: Ultrasound Gas Flow Meter for Household Application. Sensors ans Actuators A Vol. 37-38 (1993), pp 135–140

    Article  Google Scholar 

  2. Garssen, H.G.v.; Magori, V.: Modelling of ultrasonic flow meters by acoustical raytracing, Acoustical Imaging, Florence (1995)

    Google Scholar 

  3. Kino, G.: „Acoustic Waves“, Springer (1987)

    Google Scholar 

  4. Goodmann, J: „Introduction to Fourier Optics“, McGraw-Hill 1968

    Google Scholar 

  5. Dowling, A.P.: Effects of motion on acoustic sources, Modern Methods in analytical acoustics, 406–427, Springer lecture notes (1992)

    Google Scholar 

  6. Howe, M.S.: The generation of sound by aerodynamic sources in an inhomogeneous steady flow, J.Fluid Meck, 67:597–610 (1975)

    Article  ADS  MATH  Google Scholar 

  7. Zienkewicz, O.C.: „Finite Element Method in engineering science“, McGraw Hill, London (1971)

    Google Scholar 

  8. Brebbia, C.A.; Telles, J.C.F; Wrobel, L.C.: „Boundary Element Techniques, Theory and Applications In Engineering“, Springer 1984

    Google Scholar 

  9. Lerch, R.; Landes, H.; Kaarmann, H.: Finite Element Modelling of the pulse-echo behavior of ultrasound transducers; Ultrasonic Symposium, Cannes (1994)

    Google Scholar 

  10. Bloom, C; Kazarinoff, N.: „Short Wave Radiation Problems in Inhomogeneous Media“, Lecture Notes in Mathematics No. 522, Springer (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eccardt, PC., Landes, H., Lerch, R., Mágori, V. (1996). Simulation of Acoustic Wave Propagation Within Flowing Media Using Simplified Boundary Element Techniques. In: Tortoli, P., Masotti, L. (eds) Acoustical Imaging. Acoustical Imaging, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8772-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8772-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4687-6

  • Online ISBN: 978-1-4419-8772-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics