Non Destructive Characterization of Photochemically Generated Crosslinking Gradients in Polymers

  • L. Simonin
  • J. J. Hunsinger
  • J. P. Gonnet
  • DJ. Lougnot
  • B. Cros
Part of the Acoustical Imaging book series (ACIM, volume 22)

Abstract

Photopolymers are extensively used in the field of coating technology, stereolithography, but also to fabricate optical elements. A good knowledge of the crosslinking process at the local scale is essential to characterize these materials and to control their quality, especially in regard to the optical or the mechanical properties, because the viscoelastic constants of the polymer as also its refractive index depend on the crosslinking density. Microechography provides a means to resolve structure heterogeneities in small volumes down to the wavelength of longitudinal sound waves in the material. In a first approach, microechography was applied to the study of small polymer disks that were photocured either through a two-level amplitude mask or a progressive neutral density filter.

Keywords

Mercury Chromium Attenuation Glycol Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    DJ. Lougnot, “Photopolymers and Holography”, in Radiation Curing in Polymer Science and Technology, Vol 3, J.P. Fouassier, J. Rabek (Eds), Chapman and Hall, Andover (1993)Google Scholar
  2. [2]
    Y.B. Boiko, JR. Moya-Cessa, F. Mendoza-Santoyo, D.J. Lougnot, “Diffractive optics for CO2 lasers on dry photopolymer: fabrication and testing” Proc. SPIE, San Diego, 2000,256–269 (1994)ADSCrossRefGoogle Scholar
  3. [3]
    Y.B. Boiko, V.S. Soloyjev, S. Calixto, D.J. Lougnot, “Dry photopolymer films for computer generated infrared radiation focusing elements” Appl. Optics, 33(5), 787–793 (1994)ADSCrossRefGoogle Scholar
  4. [4]
    D. Bonvallot, Thèse de l’université de Haute-Alsace, “Développement de photopolymères à gradient d’indice de réfraction en vue d’applications en optique ophtalmique”, Mulhouse (1994)Google Scholar
  5. [5]
    R.A. Lemons and CF. Quate, Appl. Phys. Lett., 24, 163 (1974)ADSCrossRefGoogle Scholar
  6. [6]
    CF. Quate, A. Atalar, H.K. Wickramasing, Proc. IEEE, 67 (1979) pp. 1092–1194ADSCrossRefGoogle Scholar
  7. [7]
    A. Briggs, Acoustic Microscopy, Ed. Clarendon Press, Oxford (1992), 103Google Scholar
  8. [8]
    M. Issoukis “Scanning acoustic microscopy — Principles and applications” Metallic Materials, Vol.5, N°2, Feb. 1989, pp 63–67Google Scholar
  9. [9]
    F. Lisy, A. Hiltner, E. Baer, J.L. Katz, A. Meunier “Application of scanning acoustic microscopy to polymer materials” Journal of Applied Polymer Science Vol. 52, 1994, pp 329–352CrossRefGoogle Scholar
  10. [10]
    S.P. Pappas, UV Curing: Science and Technology, Technology Marketing Corp., Stamford 1985; Willey, New York 1992Google Scholar
  11. [11]
    J.P. Fouassier, J. Rabek (Eds), New aspects of Radiation Curing in Polymer Science and Technology, Chapman and Hall, London 1993Google Scholar
  12. [12]
    R.J.M. da Fonseca, Y.M.B. de Almeida, B. Cros, J.M. Saurel and M.J.M. Abadie, Thin Solid Films, 291 (1994) pp 110,122CrossRefGoogle Scholar
  13. [13]
    J.J. Hunsinger, L. Simonin, J.P. Gonnet, B. Cros, D.J. Lougnot, Pure Appl. Opt. 4 (1995) pp 529–542ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • L. Simonin
    • 1
    • 2
  • J. J. Hunsinger
    • 1
  • J. P. Gonnet
    • 1
  • DJ. Lougnot
    • 2
  • B. Cros
    • 1
  1. 1.Institut Polytechnique de SévenansBelfort CedexFrance
  2. 2.Laboratoire de Photochimie GénéraleMulhouse CedexFrance

Personalised recommendations