Advertisement

Acoustic Microscopy with Resolution in the Nm-Range

  • U. Rabe
  • K. Janser
  • W. Arnold
Part of the Acoustical Imaging book series (ACIM, volume 22)

Abstract

In conventional Acoustic Microscopy1 (SAM) a focused acoustic beam is scanned over the sample surface and the lateral resolution is given by the focal spot diameter. According to Abbe’s principle this is determined by the wavelength which in practice limits the resolution of SAM to about 1 μm because of the high absorption at high acoustic frequencies. The idea of near-field microscopy is to guide the acoustic wave towards the sample by a structure, e.g. a pin or a pin hole, with dimensions smaller than the acoustic wavelength. When the sample is placed in the near field radiated from the pin, a resolution can be achieved determined by the pin diameter and not by the acoustic wavelength. Fig. 1 shows an example of SAM working in transmission at a frequency of 35 MHz2. With the pin probe a lateral resolution of 10 μm was achieved, while with the lens, the resolution was only 50 urn. Other examples of near-field acoustic microscopes based on this principle can be found in the literature3,4;5.

Keywords

Scan Tunneling Microscopy Vibration Amplitude Acoustical Image Acoustic Microscopy Surface Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A.D. Briggs, “Acoustic Microscopy”, Oxford University Press, Oxford (1992).Google Scholar
  2. 2.
    J.K. Zieniuk and A. Latuszek, Acoustical Imaging, Vol. 17, Eds. H. Shimizu, N. Chubachi, and J. Kushibiki, Plenum Press, New York: 219 (1989).CrossRefGoogle Scholar
  3. 3.
    W. Dürr, D.A. Sinclair, and E.A. Ash, Electr.Lett. 16: 805 (1980).CrossRefGoogle Scholar
  4. 4.
    A. Kulik, J. Attal, and G. Gremaud, Acoustical Imaging, Vol. 20, Eds. Y. Wei and B. Gu, Plenum Press, New York: 241 (1993).CrossRefGoogle Scholar
  5. 5.
    B. T. Khuri-Yakub, C. Cinbis, C.H. Chou, and P.A. Reinholdtsen, Proc. 1989 IEEE Ultrasonics Symp.: 805 (1989).Google Scholar
  6. 6.
    G. Binnig and H. Rohrer, Sci. Am. 253: 50 (1985).CrossRefGoogle Scholar
  7. 7.
    S. Akamine, B. Hadimioglu, B.T. Khuri-Yakub, H. Yamada, and C.F. Quate, Transducers ′91, IEEE Int. Conf. on Solid State Sensors and Actuators: 857 (1991).Google Scholar
  8. 8.
    K. Uozumi and K. Yamamuro, Jpn. J. of Appl. Phys. 28: L1297 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    K. Takata, T. Hasegawa, S. Hosaka, S. Hosoki, and T. Komoda, Appl. Phys. Lett. 55:1718 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    A. Moreau and J. B. Ketterson, J. Appl. Phys. 72: 861 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    W. Rohrbeck, E. Chilla, H.-J. Fröhlich, and J. Riedel, Appl. Phys. A 52: 344 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    G. Binnig, C.F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56: 930 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    B. Cretin and F. Sthal, Appl. Phys. Lett. 62: 829 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    W. Rohrbeck and E. Chilla, Phys. Stat. Sol. 131: 69 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    O. Kolosov and K. Yamanaka, Jpn. J. Appl. Phys. 32: 22 (1993).CrossRefGoogle Scholar
  16. 16.
    K. Yamanaka, “New Approaches in Acoustic Microscopy for Noncontact Measurement and UltraHigh Resolution”, in “Advances in Acoustic Microscopy”, Vol. 1, Ed. A. Briggs, Plenum, N.Y., 1995.Google Scholar
  17. 17.
    O. Kolosov, Acoustical Imaging, Vol. 22, Proc. 22nd Int.Symp.Acoust.Img., Florence, 1995, Ed. P. Tortoli, to be published.Google Scholar
  18. 18.
    U. Rabe and W. Arnold, Ann. Phys. 3: 589 (1994).CrossRefGoogle Scholar
  19. 19.
    U. Rabe and W. Arnold, Appl. Phys. Lett. 64: 1493.(1994).ADSCrossRefGoogle Scholar
  20. 20.
    See for example: J. W. Wagner, “Optical Detection of Ultrasound”, p. 201 in “Physical Acoustics”, Vol. 19, Eds. W.P. Mason and R.N. Thurston, Academic Press, New York, 1990.Google Scholar
  21. 21.
    P.M. Morse und K. U. Ingard, “Theoretical Acoustics”, McGraw-Hill, New York (1968).Google Scholar
  22. 22.
    W. F. Stokey, “Vibration of Systems Having Distributed Mass and Elasticity”, Chap. 7 in “Shock and Vibration Handbook”, Eds. CM. Harris und CE. Crede, McGraw-Hill, New York (1976).Google Scholar
  23. 23.
    D. Sarid, “Scanning Force Microscopy”, Oxford University Press, Oxford (1991).Google Scholar
  24. 24.
    M. Nonnenmacher, PhD-Thesis, Gesamthochschule Kassel, Fachbereich Physik (1990).Google Scholar
  25. 25.
    J. Colchero, PhD-Thesis, Universität Konstanz, Fakultät für Physik (1993).Google Scholar
  26. 26.
    U. Rabe, K. Janser, and W. Arnold, in preparation.Google Scholar
  27. 27.
    U. Rabe and W. Arnold, Acoustical Imaging, Vol. 21, Proc. 21th Int. Symp. Acoust. Img., Laguna Beach, 1994, Ed. J. Jones, Plenum Press, New York, to be published.Google Scholar
  28. 28.
    U. Rabe, M. Dvorak, and W. Arnold, Thin Solid Films 264:165 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    N.A. Burnham, A.J. Kulik, G. Gremaud and G.A.D. Briggs, Phys.Rev.Lett. 72: 5092 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • U. Rabe
    • 1
  • K. Janser
    • 1
  • W. Arnold
    • 1
  1. 1.Fraunhofer-Institute for Nondestructive TestingSaarbrückenGermany

Personalised recommendations