Skip to main content

Coronary Perfusion as the Major Determinant of Myocardial Contractility in the Heart: Implication for Myocardial Hibernation

  • Chapter
  • 49 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 194))

Abstract

Coronary perfusion pressure and blood flow are closely linked to myocardial metabolic states and contractility. When coronary perfusion pressure decreases below the level of the coronary flow autoregulation, myocardial contractility is markedly decreased. Myocardial ischemia causes accumulation of H+ and inorganic phosphates, both of which decrease the myofilament sensitivity to Ca2+ and maximal response of myofilaments to Ca2+. Furthermore, adenosine and EDRF (NO), produced during ischemia, stimulate adenylate and guanulate cyclase, respectively, both of which have been reported to decrease myocardial contractility. In turn, norepinephrine is released according to the severity of myocardial ischemia, which tends to compensate the depression of myocardial contractility. On the other hand, when myocardial ischemia is not apparent due to coronary flow autoregulation during mild reduction of coronary perfusion pressure, myocardial contractility decreases, recognized as Gregg ’s phenomenon. There are several hypotheses to explain this phenomenon: 1) decreases in sarcomere length of the myofilaments, 2) reversal of latent myocardial ischemia, 3) release of cardiodepressive agents, and 4) decreases in either Ca2+ transient or Ca2+ sensitivity. Ca2+ transients were measured in the ferret Langendorff preparation at various perfusion pressure; the amplitude of Ca2+ transients was decreased when coronary perfusion pressure was reduced in the range of coronary flow autoregulation. Taken together, these results support the hypothesis of the tight linkage between coronary perfusion and myocardial contractility in normal and ischemic hearts. The concert interaction between myocardial perfusion and intracellular Ca2+ concentration may be essential for maintaining homeostasis of myocardial cellular function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang AE, Detar R. Oxygen and vascular smooth muscle contraction revisited. Am J Physiol 1980;238:H716–H718.

    PubMed  CAS  Google Scholar 

  2. Case RB, Felix A, Wachter M et al. Relative effect of CO2 on canine coronary vascular resistance. Circ Res 1978;42:410–418.

    Article  PubMed  CAS  Google Scholar 

  3. Broten TP, Feigl EO. Role of myocardial oxygen and carbon dioxide in coronary autoregulation. Am J Physiol 1992;262:H1231–H1237.

    PubMed  CAS  Google Scholar 

  4. Hori M, Kitakaze M. Adenosine, the heart, and coronary circulation. Hypertension 1991:18:565–574.

    Article  PubMed  CAS  Google Scholar 

  5. Berne RM, Rubio R, Cumish RR. Release of adenosine from ischemic brain: Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 1974;35:262–271.

    Article  CAS  Google Scholar 

  6. Schrader J, Haddy FJ, Gerlach E. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflugers Arch 1977;369:l–6.

    Google Scholar 

  7. Kroll K, Feigl EO. Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol 1985;249:H1186–H1187.

    Google Scholar 

  8. Dole WP, Yamada N, Bishop VS et al. Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ Res 1985;56:517–524.

    Article  PubMed  CAS  Google Scholar 

  9. Gidday JM, Ely SW, Esther JW et al. Progressive attenuation of coronary reactive hyperemia with increasing interstitial theophylline permeation. Fed Proc 1984;43:1084.

    Google Scholar 

  10. Morioka T, Kitakaze M, Minamino T et al. Role of endogenous adenosine in coronary pressure-flow relationship in dogs. J. Am. Coll. Cardiol. Special Issue 1994;262A.

    Google Scholar 

  11. Ueeda M, Silvia S, Olsson RA. Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 1992;70:1296–1303.

    Article  PubMed  CAS  Google Scholar 

  12. Kitakaze M, Takashima S, Node K et al. Role of nitric oxide for regulation of coronary blood flow of ischemic myocardium in dogs. Am. J. Coll. Cardiol. (in press).

    Google Scholar 

  13. Daut J, Maier-Rudolph W, von Beckerath N et al. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990;247:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  14. Komaru T, Lamping KG, Easthan CL et al. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res 1991; 69:1146–1151.

    Article  PubMed  CAS  Google Scholar 

  15. Aversano T, Ouyang P, Silverman H. Blockade of the ATP-sensitive potassium channel modulate reactive hyperemia in the canine coronary circulation. Circ Res 1991;69:618–622.

    Article  PubMed  CAS  Google Scholar 

  16. Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arteries. Am J Physiol 1988;255:H1558–H1562.

    PubMed  CAS  Google Scholar 

  17. Zuberbuhler RC, Bohr DF. Responses of coronary smooth muscle to catecholamine. Circ Res 1965;16:431–440.

    Article  PubMed  CAS  Google Scholar 

  18. Buffington CW, Feigl EO. Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog. Circ Res 1983;53:613–621.

    Article  PubMed  CAS  Google Scholar 

  19. Kitakaze M, Hori M, Tamai J et al. al-Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 1987;60:631–639.

    Article  PubMed  CAS  Google Scholar 

  20. Buxton ILO, Walther J, Westfall DP. Purinergic mechanisms in cardiac blood vessels: Stimulation of endothelial cell a receptors in vitro by the neurotransmitter norepinephrine leads to the rapid release of ATP and its subsequent breakdown to adenosine (abstract). Heart and Vessel 1990;4(Suppl):27.

    Google Scholar 

  21. Kitakaze M, Hori M, Morioka T, et. al-adrenoceptor activation increases ectosolic 5’-nucleotidase activity and adenosine release in rat cardiomyocytes by activing protein kinase C. Circulation 91:2226–2234,1995

    Article  PubMed  CAS  Google Scholar 

  22. Kitakaze M, Hori M, Kamada T. Role of adenosine and its interaction with alpha adrenoceptor activity in ischemic and reperfusion injury of the myocardium. Cardiovasc Res 1993;27:18–27.

    Article  PubMed  CAS  Google Scholar 

  23. Gregg DE. Effects of coronary perfusion pressure or or coronary flow on oxygen usage of the myocardium. Circ Res 1963;13:497–500.

    Article  PubMed  CAS  Google Scholar 

  24. Kitakaze M, Marban E. Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol 1989;414:455–472.

    PubMed  CAS  Google Scholar 

  25. Schouten VJ, Allaart CP, Westerhof N. Effect of perfusion pressure on force contraction in thin papillary muscles and trabeculae from rat heart. J Physiol 1992;451:585–604.

    PubMed  CAS  Google Scholar 

  26. Feigl EO. Coronary physiology. Physiol Rev 1983;63:l–205.

    Google Scholar 

  27. Haneda T, Morgan HE, Watson PA. Effect of calcium uptake increased by elevated aortic pressure on total and ribosomal protein synthesis in rat heart. J Mol Cell Cardiol 1988;20:Suppl(III)-S35.

    Google Scholar 

  28. Rahimtoola SH, Griffith GC. The hibernating myocardium. Am Heart J 1989;117:211–221.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kitakaze, M. (1997). Coronary Perfusion as the Major Determinant of Myocardial Contractility in the Heart: Implication for Myocardial Hibernation. In: Mentzer, R.M., Kitakaze, M., Downey, J.M., Hori, M. (eds) Adenosine, Cardioprotection and Its Clinical Application. Developments in Cardiovascular Medicine, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8736-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8736-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4676-0

  • Online ISBN: 978-1-4419-8736-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics