Advertisement

Newton’s Method

  • Richard A. Holmgren
Part of the Universitext book series (UTX)

Abstract

The search for solutions of the equation f(x) = 0 is ancient, and methods that can solve equations of the form ax2 + bx + c = 0 are several thousand years old. In the sixteenth century, Italian mathematicians discovered methods for solving third- and fourth-degree polynomials. However, it was shown in the early part of the nineteenth century that there is no general method for solving polynomials of degree five or higher. Consequently, methods for estimating solutions of equations as simple as polynomials are necessary. Isaac Newton developed such a method, which was later refined by Joseph Raphson, and which we now know as rNewton’s method or the Newton-Raphson Method. Newton’s method is easy to use and is often taught in first semester calculus since it only requires knowledge of the derivative.

Keywords

Bifurcation Diagram Real Root Periodic Point Tangent Line Prime Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Richard A. Holmgren
    • 1
  1. 1.Department of MathematicsAllegheny CollegeMeadvilleUSA

Personalised recommendations