Carbon Fibers From Pan and Pitch

  • R. Naslain
Part of the Materials Technology Series book series (MTEC, volume 6)


Commercial carbon fibers are obtained from solid organic precursor fibers such as polyacrylonitrile fibers, or from solid carbonaceous precursor fibers derived from pitch or mesopitch, the semisolid residue of oil refineries.


Carbon Fiber Graphene Layer Heat Treatment Temperature Fiber Axis Highly Orient Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. au][1]
    J.B. Donnet and R. Bansal, Carbon Fibers, Vol. 10 in Int. Fiber Sci. and Technology Series, 2nd Edit. Revised and Expanded, Marcel Dekker, New York and Basel (1990).Google Scholar
  2. [2]
    Chawla, Ceramic reinforcements, in Ceramic Matrix Composites, chap. 3, 45–125, Chapman and Hall, London (1993).Google Scholar
  3. [3]
    E. Fitzer and M. Heine, Carbon fibre manufacture and surface treatment, in Fibre reinforcements for composite materials, A. R. Bunsell, ed., chap. 3, 73–148, Elsevier, Amsterdam and New York (1988).Google Scholar
  4. [4]
    A. Oberlin and M. Guigon, The structure of carbon fibres, in Fibre reinforcements for composite materials, A.R. Bunsell, ed., chap. 4, 149–210, Elsevier, Amsterdam and New York (1988).Google Scholar
  5. [5]
    G. Savage, Carbon fibres, in Carbon-carbon composites, chap. 2, 37–83, Chapman and Hall, London (1993).Google Scholar
  6. [6]
    D. D. Edie and R. J. Diefendorf, Carbon fiber manufacture, in Carbon-carbon materials and composites, J. D. Buckley and D. D. Edie, eds, ch. 2, 19–40, Noyes Publ., Park Ridge, NJ (1993).Google Scholar
  7. [7]
    D. D. Edie and E. G. Stoner, Effect of microstructure and shape on carbon fiber properties, in Carbon-carbon materials and composites, J. D. Buckley and D. D. Edie, eds., chap. 3, 41–70, Noyes Publications, Park Ridge, NJ (1993).Google Scholar
  8. [8]
    H. O. Pierson, Handbook of carbon, graphite, diamond and fullerenes, Noyes Publications, Park Ridge, NJ (1993).Google Scholar
  9. [9]
    I. A. S. Edwards, Structure in carbons and carbon forms, in Introduction to Carbon Science, H. Marsh, ed., chap. 1, 1–18, Butterworths, London (1989).Google Scholar
  10. [10]
    A. Oberlin, High-resolution studies of carbonization and graphitization, in Chemistry and Physics of Carbon, P. A. Thrower, ed., vol. 22, 1–143, Marcel Dekker, NY and Basel (1989).Google Scholar
  11. [11]
    M. Guigon M., Microtexture and mechanical properties of carbon fibers: relationship with the fiber-matrix adhesion in a carbon-epoxy composite, Polym. Eng. Sci., 31[17], 1264–1270 (1991).Google Scholar
  12. [12]
    W. Watt, Chemistry and physics of the conversion of polyacrylonitrile fibers into high-modulus carbon fibers, in Handbook of Composites, Vol I — Strong Fibers, W. Watt and B. V. Perov, eds., Elsevier Science Publ., 327–387 (1982).Google Scholar
  13. [13]
    E. Fitzer, W. Frohs and M. Heine, Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres, Carbon, 24, 387–395 (1986).CrossRefGoogle Scholar
  14. [14]
    I.C.Lewis, Chemistry and development of mesophase in pitch, J. Chim. Phys. Physico-chim. Biol., 81[11/12], 751–758 (1984).Google Scholar
  15. [15]
    L S. Singer, High modulus, high strength carbon fibers produced from mesophase pitch, U.S. Pat. 4, 005, 183, Jan. 25, 1977.Google Scholar
  16. [16]
    J. D. Brooks and G. H. Taylor, The formation of some graphitizatizing carbons, in Chemistry and Physics of Carbon, P. L. Walker ed., Vol. 4, 243–286, Marcel Dekker, NY (1968).Google Scholar
  17. [17]
    L. S. Singer and J. Lewis, ESR study of the kinetics of carbonization, Carbon, 16, 417–423 (1978).CrossRefGoogle Scholar
  18. [18]
    R. J. Diefendorf and D. M. Riggs, Forming optically anisotropic pitches, US Pat. 4, 208, 267, June 17, 1980.Google Scholar
  19. [19]
    W. M. Kalback, H. E. Romine and X. M. Bourrat, Solvated mesophase pitches, US Pat. 5, 259, 947, Nov. 9, 1993.Google Scholar
  20. [20]
    H. Gasparoux, Liquid crystals and carbonaceous mesophase (in french), J. Chimie Physique, 81[11/12], 759–767 (1984).Google Scholar
  21. [21]
    J. E. Zimmer and J. L. White, Disclination structures in the carbonaceous mesophase, Adv. in Liquid Cryst, 5, 157–213 (1982).Google Scholar
  22. [22]
    D. Auguie, M. Oberlin, A. Oberlin and P. Hyvernat, Microtexture of mesophase spheres as studied by high resolution conventional transmission electron microscopy (CTEM), Carbon, 18, 337–346 (1980).CrossRefGoogle Scholar
  23. [23]
    F. F. Nazem, Flow of molten mesophase pitch, Carbon, 20[4], 345–354, (1982).CrossRefGoogle Scholar
  24. [24]
    D. D. Edie and M. G. Dunham, Melt spinning pitch-based carbon fibers, Carbon, 27[5], 647–655 (1989).CrossRefGoogle Scholar
  25. [25]
    T. Hamada, M. Furuyama, Y. Sajiki, T. Tomioka and M. Endo M., Preferred orientation of pitch precursor fibers, J. Mater. Res., 5[6], 1271–1280 (1990).CrossRefGoogle Scholar
  26. [26]
    I. Mochida, Seong-Ho Yoon and Y. Korai, Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles, J. Mater. Sci., 28, 2331–2336 (1993).CrossRefGoogle Scholar
  27. [27]
    T. Hamada, T. Nishida, Y. Sajiki, M. Matsumoto and M. Endo, Structures and physical properties of carbon fibers from coal tar mesophase pitch, J. Mater. Res., 2[6], 850–857 (1987).CrossRefGoogle Scholar
  28. [28]
    D. D. Edie, N. K. Fox, Barnett and Fain, Melt-spun non-circular carbon fibers, Carbon, 24[4], 477–482 (1986).CrossRefGoogle Scholar
  29. [29]
    Sin-Shong Lin, Oxidative stabilization in production of pitch based carton fiber, SAMPE Journal, 27[1], 9–14 (1991).Google Scholar
  30. [30]
    X. Bourrat, E. J. Roche and J. G. Lavin, Structure of mesophase pitch fibers, Carbon, 28[2/3], 435-446 (1990).Google Scholar
  31. [31]
    D. J. Johnson, Structure and properties of carbon fibres, in Carbon Fibers Filaments and Composites, J. L. Figueiredo et al., eds., 119–146, Kluwer Acad. Publ., Dordrecht NL (1990).Google Scholar
  32. [32]
    M. Endo, Structure of mesophase pitch-based carbon fibres, J. Mater. Sci., 23, 598–605 (1988).CrossRefGoogle Scholar
  33. [33]
    A. M. Rao, A. W. P. Fung, M. S. Dresselhaus and M. Endo, Structural characterization of heat-treated activated carbon fibers, J. Mat. Res., 7[7], 1788–1794 (1992).CrossRefGoogle Scholar
  34. [34]
    E. Fitzer, PAN-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters, Carbon, 27[5], 621–645 (1989).CrossRefGoogle Scholar
  35. [35]
    M. Guigon, A. Oberlin and G. Desarmot, Microtexture and structure of some high-modulus Pan-based carbon fibres, Fibre Science and Technology, 20, 177–198 (1984).CrossRefGoogle Scholar
  36. [36]
    M. Guigon and A. Oberlin, Heat treatment of high tensile strength PAN-based carbon fibres: microtexture and mechanical properties, Composites Sci. Tech., 27, 1–23 (1986).CrossRefGoogle Scholar
  37. [37]
    A. Oberlin, Carbonization and graphitization, Carbon, 22[6], 521–541 (1984).CrossRefGoogle Scholar
  38. [38]
    D. D. Edie, Pitch and mesophase fibers, in Carbon Fibers Filaments and Composites, J. L Figueiredo, Bernardo, R. T. K. Baker and J. Huttinger, eds., 43–72, Kluwer Academic Publishers, Dordrecht (1989).Google Scholar
  39. [39]
    E. J. Roche, J. G. Lavin and R. G. Parrish, The mosaic nature of the graphite sheet in pitch-based carbon fibers, Carbon, 26, 911–913 (1988).CrossRefGoogle Scholar
  40. [40]
    E. J. Roche, Electron microscopy study of mesophase pitch-based graphite fibres, J. Mater. Sci., 25, 2149–2158 (1990).CrossRefGoogle Scholar
  41. [41]
    J. D. FitzGerald, G. M. Pennock and G. H. Taylor, Domain structure in MP (mesophase pitch)-based fibres, Carbon, 29[2], 139–164 (1991).CrossRefGoogle Scholar
  42. [42]
    X. M. Bourrat, E. J. Roche and J. G. Lavin, The role of disclinations in the structure of mesophase pitch-based carbon fibers, Proc. Int. Symp. Carbon, Tsukuba, Tanso ed., 320–323, Nov. 4-8, 1990.Google Scholar
  43. [43]
    I. Mochida, Shu-Ming Zheng, Y. Korai and I. Toshima, The introduction of a skin-core structure in mesophase pitch fibers by oxidative stabilization, Carbon, 28[1], 193–198 (1990).CrossRefGoogle Scholar
  44. [44]
    L. H. Peebles, Jr., Carbon fibres: structure and mechanical properties, Intern. Mater. Rev., 39[2], 75–92 (1994).Google Scholar
  45. [45]
    Yanling Huang and R. J. Young, Micro-structure and mechanical properties of pitch-based carbon fibres, J. Mater. Sci., 29, 4027–4036 (1994).CrossRefGoogle Scholar
  46. [46]
    J. D. H. Hughes, Strength and modulus of current carbon fibres, Carbon, 24[5], 551–556 (1986).CrossRefGoogle Scholar
  47. [47]
    S. Ozbeck, G. M. Jenkins and D. H. Isaac, Mechanical properties of hot stretched carbon fibres, Ext. Abstracts 20th. Biennal Conf. on Carbon, Santa Barbara, The Amer. Carbon Soc, 308–309 (1991).Google Scholar
  48. [48]
    E. M. Asloun, J. B. Donnet, G. Guilpain, M. Nardin and J. Schultz, On the estimation of the tensile strength of carbon fibres at short lengths, J. Mater. Sci., 24, 3504–3510 (1989).CrossRefGoogle Scholar
  49. [49]
    J. W. Hitchon and D. Phillips, The dependence of the strength of carbon fibres on length, Fibre Sci. and Technology, 12, 217–233 (1979).CrossRefGoogle Scholar
  50. [50]
    M. Waterbury and L T. Drzal, On the determination of fiber strengths by in-situ fiber strength testing, J. Composites Technology and Res., 13[1], 22–28 (1991).Google Scholar
  51. [51]
    K. Kogure, G. Sines and J. G. Lavin, Microstructure and texture of pitch-based carbon fibers after creep deformation, Carbon, 32[8], 1469–1484 (1994).CrossRefGoogle Scholar
  52. [52]
    R. Moreton and W. Watt, The spinning of polyacrylonitrile fibres in clean room conditions for the production of carbon fibres, Carbon, 12, 543–554 (1974).CrossRefGoogle Scholar
  53. [53]
    J. E. Zimmer, Disclinations and fracture, Proc. Int. Symp. Carbon: New Processing and New Applications, Toyohashi, 131–134, Kagaku Gijutsu-Sha, Tokyo (1982).Google Scholar
  54. [54]
    I. Mochida, L. Ling and Y. Korai, Some factors for the high performances of mesophase pitch based carbon fibre, J. Mater. Sci., 29, 3050–3056 (1994).CrossRefGoogle Scholar
  55. [55]
    T. Matsumoto, Mesophase pitch and its carbon fibers, Pure and Applied Chem., 57[11], 1553–1562 (1985).CrossRefGoogle Scholar
  56. [56]
    J. A. H. De Pruneda and R. J. Morgan, The effects of thermal exposure on the structural and mechanical integrity of carbon fibres, J. Mater. Sci., 25, 4776–4781 (1990).CrossRefGoogle Scholar
  57. [57]
    S. Kumar, Structure and properties of high performance polymeric and carbon fibers: an overview, SAMPE Quarterly, 20[2], 3–8 (1989).Google Scholar
  58. [58]
    Y. Tanabe, E. Yasuda, A. R. Bunsell, Y. Favry, M. Inagaki and M. Sakai, The strength of pitch-based carbon fibre at high temperature, J. Mater. Sci., 26, 1601–1604 (1991).CrossRefGoogle Scholar
  59. [59]
    S. Ozbek, G. M. Jenkins and D. H. Isaac, Thermal expansion and creep of carbon fibers, Ext. Abstr. 20th Biennal Conf. Carbon, Santa Barbara, 270–271, Amer. Carbon Soc. Ed., (1991).Google Scholar
  60. [60]
    J. F. Villeneuve, R. Naslain, R. Fourmeaux and J. Sevely, Longitudinal/radial thermal expansion and Poisson ratio of some ceramic fibers as measured by Composites Sci. Technology, 49, 89–103 (1993).Google Scholar
  61. [61]
    J. M. Kowalski, New high performance domestically produced carbon fibers, Proc. 32nd Int. SAMPE Symp., 953–963, April 6-9, 1987.Google Scholar
  62. [62]
    M. S. Dresselhaus and M. Endo, Intercalation of graphite fibers, in Graphite Intercalation Compounds II, H. Zabel and S. A. Solin, eds., Springer Series in Mater. Sci., vol. 18, chap. 8, 347–411, Springer (1992).Google Scholar
  63. [63]
    Fundamental Issues in Control of Carbon Gasification Reactivity, J. Lahaye and P. Ehrburger, eds., NATO ASI-series, Series E-Applied Sciences, Vol. 192, Kluwer Academic Publishers, Dordrech/Boston/London (1990).Google Scholar
  64. [64]
    T. L. Dhami, L. M. Manocha and O. P. Bahl, Oxidation behaviour of pitch based carbon fibers, Carbon, 29[1], 51–60 (1991).CrossRefGoogle Scholar
  65. [65]
    Sciences et Technologies au Japon: les Materiaux Carbones, 129-139, SF-JTI, French Foreign Ministry, Paris (1993).Google Scholar
  66. [66]
    F. Lamouroux, X. Bourrat, R. Naslain and J. Sevely, Structure-oxidation behavior relationship in the carbonaceous constituents of 2D-C/PyC/SiC composites, Carbon, 31, 1273–1288 (1993).CrossRefGoogle Scholar
  67. [67]
    L. E. Jones and P. A. Thrower, Influence of boron on carbon fiber microstructure, physical properties and oxidation behavior, Carbon, 29[2], 251–269 (1991).CrossRefGoogle Scholar
  68. [68]
    Y. Deslandes and F. N. Sabir, Inhibition of oxidation of carbon fibres by sol-gel coatings, J. Mater. Sci. Letters, 9, 200–202 (1990).CrossRefGoogle Scholar
  69. [69]
    J. Bouix, R. Favre, Vincent, H, Vincent, S. Cardinal, P. Fleischmann, P, F. Gobin and P. Merle, Carbon fibre coating and its influence on the mechanical behavior of the composites, Proc. 10th Tsukuba General Symp., 259–272, Oct. 2-3, 1990.Google Scholar
  70. [70]
    T. Helmer, H. Peterlik and K. Kromp, Coating of carbon fibers: the strength of the fibers, J. Amer. Ceram. Soc., 78[1], 133–136 (1995).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher 2000

Authors and Affiliations

  • R. Naslain

There are no affiliations available

Personalised recommendations