Short Fibers, Whiskers, and Nanotubes

  • Fred Wallenberger
Part of the Materials Technology Series book series (MTEC, volume 6)

Abstract

Short needle shaped, inorganic fibers occur in nature, or can be synthesized by a variety of experimental and commercial processes. If these fibers are filamentary single crystals, they are called whiskers. If however they are polycrystalline or amorphous, they are called short fibers.

Keywords

Microwave Zirconia Benzene Boron Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. I. Givargizov, Growth of whiskers from the vapor phase, in Highly Anisotropie Crystals, D. Reidel Publishing Company, Dortrecht, 70–229, (1987).Google Scholar
  2. [2]
    J. V. Milewski, Whiskers, in Concise Encyclopedia of Composite Materials, A. Kelly, (ed.), Pergamon, Elsevier Science, 281–284 (1994).Google Scholar
  3. [3]
    J. E. Alleman and B. T. Mossman, Asbestos revisited, Scientific American, [7) 70–75 (1997).Google Scholar
  4. [4]
    A. W. Ware, Crystal growth, Principles and Progress, Chapter 1, Plenum Press, NY (1987).Google Scholar
  5. [5]
    R. S. Wagner and W. S. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 4, 89–90 (1964).CrossRefGoogle Scholar
  6. [6]
    J. J. Petrovic and G. F. Hurley, Vapor-liquid-solid (VLS) SiC whiskers, in Fiber Reinforced Ceramic Composites, K. S. Mazdiayasni, (ed.), Noyes Publications, Park Ridge, New Jersey, 93–121 (1990).Google Scholar
  7. [7]
    G. G. Tibbetts, Vapor-grown carbon fibers, in Carbon Fibers, Filaments and Composites, J. L. Figueriredo et al., (eds.), Kluwer Academic Publishers, Dortrecht, 73–93 (1990).Google Scholar
  8. [8]
    W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274, 1701–1703 (1996).Google Scholar
  9. [9]
    T. Bellamonte, L. Bonnetain and J. L. Ginoux, Synthesis of silicon carbide whiskers using the vapour-liquid-solid mechanism in a silicon rich droplet, Journal of Materials Science, 31[9], 2367–2371 (1997).Google Scholar
  10. [10]
    H. Wang, Y. Berta and G. S. Fishman, Microstructure of silicon carbide whiskers synthesized by carbothermal reduction of silicon nitride, J. Am. Ceram. Soc, 75, 0, 1080–1084 (1992).CrossRefGoogle Scholar
  11. [11]
    S. lijima, Nature, Carbon nanotubes, 354, 56 (1991).Google Scholar
  12. [12]
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Pettit, J. Robert, Xu. Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483–487 (1996).Google Scholar
  13. [13]
    N. G. Chopra, R. J. Luyken, Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Boron nitride nanotubes, Science, 269, 996–997 (1995).Google Scholar
  14. [14]
    R. V. Krishnarao, M. M. Godkhindi, M. Chakraborty and P. G. Mukunda, Formation of SiC whiskers from compacts of raw rice husks, Jour. of Materials Science, 29, 2741–2744 (1994).CrossRefGoogle Scholar
  15. [15]
    S. lijima and T. Ichahashi, Single-shell carbon nanotubes of 1 nm diameter, Nature, 363, 603–605 (1993).Google Scholar
  16. [16]
    J. Charlier, A. De Vita, X. Blase and R. Car, Microscopic growth mechanisms for carbon nanotubes, Science, 275, 646–649 (1997).CrossRefGoogle Scholar
  17. [17]
    T. W. Ebbessen, Carbon Nanotubes, Ann. Rev. Mater. Sci., 24, 235–264 (1994)CrossRefGoogle Scholar
  18. [18]
    T. J. Trentler, K. M. Hickman, S. Goel, A. M. Viano, P. Gibbons and W. E. Buhro, Solution-liquid-solid growth of crystalline III-IV semiconductors: an analogy to vapor liquid solid growth, Science, 270, 1791–1794 (1995).CrossRefGoogle Scholar
  19. [19]
    R. G. Parrish, Pitch carbon fibers and batt, U. S. Patent 4, 861, 653, August 29, 1989.Google Scholar
  20. [20]
    T. Imamura and M Nakamizo, Carbon, 17, 507 (1979).CrossRefGoogle Scholar
  21. [21]
    F. Benissad, P. Gadalle, W. Coulon and L Bonnetain, Formation de fibres de carbone a partir du methane I: croissance catalytique et epaississement pyrolytique, Carbon, 26, 61 (1988).CrossRefGoogle Scholar
  22. [22]
    S. Motojima and Y. Kawashima, Chemical vapour growth of HfC whiskers and their morphology, Journal of Materials Science, 31, 3697–3700 (1996).CrossRefGoogle Scholar
  23. [23]
    H. Iwanaga, M. Kawaguchi and S. Motojima, Growth mechanisms and properties of coiled whiskers of silicon nitride and carbon, J. J. Appl. Phys., 32[1], 105–115 (1993).Google Scholar
  24. [24]
    U. Vogt, J. Kübier, and G. Engeli, Synthesis of S13N4 Fibers by a Gas Phase Reaction, Ceramics International (1996).Google Scholar
  25. [25]
    G. G. Tibbetts, M. Endo and P. Beetz, Jr., Carbon Fibers Grown from the Vapor Phase: A Novel Material, SAMPE Journal, 22(5), 30–35 (1986).Google Scholar
  26. [26]
    M. Hatano, T. Ohsaki and K. Arakawa, Graphite whiskers by new process and their composites, SAMPE Symposium Series, 30, 1467–1476 (1985).Google Scholar
  27. [27]
    Information Bulletin, Production of ceramic whiskers, Battelle, Geneva Research Center (1987).Google Scholar
  28. [28]
    J. M. Ting and M. L. Lake, Diamond coated carbon fiber, J. Mater. Res., 9, 636–642 (1994).CrossRefGoogle Scholar
  29. [29]
    Dai and X. Zhang, Microwave synthesis of ultrafine silicon carbide whiskers, J. Am. Ceram. Soc, 80[5], 1274–1276 (1997).Google Scholar
  30. [30]
    Tokai Carbon Company, Tokawhisker and Tokamax product literature (1987)Google Scholar
  31. [31]
    P. K. Panda, L Mariappan, V. A. Jaleel, T. S. Kannan, A. Amroune, J. Dubois and G. Fantozzi, Preparation of zirconia and silicon carbide whisker biphasic powder mixtures by carbothermal reduction of zircon powders, Jour, of Mat. Science, 31[16], 4277–4288 (1996).CrossRefGoogle Scholar
  32. [32]
    M. Endo et al., J. Phys. Chem. Solids, 54, 1841 (1993).CrossRefGoogle Scholar
  33. [33]
    H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and Lieber, Nature, 375, 769 (1995).CrossRefGoogle Scholar
  34. [34]
    D. S. Bethune, H. Kiang, M. S. de Vries, P. Gorman, R. Savoy, J. Vasquez and R. Beyers, Cobalt-catalyzed growth of carbon nanotubes with single-atomic layer walls, Nature, 363, 605–607 (1993).CrossRefGoogle Scholar
  35. [35]
    P. Gese, Scanning probe microscopy: materials analysis with an added dimension, Journal of Metals, 12, 8–10 (1992).Google Scholar
  36. [36]
    A. Spindt, H. E. Holland, A. Rosengreen, and I. Brodie, Field emitter arrays for vacuum microelectronics, IEEE Trans. Electron Dev., 38, 2355–2363 (1991).CrossRefGoogle Scholar
  37. [37]
    H. W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, Atomic resolution in lensless low-energy electron holography, Physics Review Letters, 67, 1543–1546 (1991).CrossRefGoogle Scholar
  38. [38]
    B. Li, G. Y. Xu, E. Y. Sun, Y. Huang and P. F. Becher, Synthesis and morphology of niobium monocarbide whiskers, J. Am. Ceram. Soc, 81 [6], 1689–1691 (1998).Google Scholar
  39. [39]
    J. E. Griffith, D. A. Grigg, M. J. Vasile, P. E. Russell, and E. A. Fitzgerald, Scanning probe metrology, J. Vac. Sci. Technology, A10, 674–679 (1992).CrossRefGoogle Scholar
  40. [40]
    L. R. Chapmann and G. L. Vaneman, Solar collector based on whisker-shaped oxides grown on metallic substrates, Solar Energv, 28, 77–79 (1982).CrossRefGoogle Scholar
  41. [41]
    G. A. Niklasson and G. Granquist, Surfaces for selective absorption of solar energy: an annotated bibliography, 1955–1981, Journal of Materials Science, 18, 3475–3534 (1983).CrossRefGoogle Scholar
  42. [42]
    I. C. Leu, Y. M. Lu, and H. M. Hon, Substrate effect on the preparation of silicon carbide whiskers by chemical vapor deposition, Journal of Crystal Growth, 167[34], 607–611 (1996).CrossRefGoogle Scholar
  43. [43]
    J. V. Milewski, Method and apparatus for continuous growth of single crystal whiskers, US Patent 5, 404, 836, April 11, 1995.Google Scholar
  44. [44]
    H. J. Choi and J. H. Lee, Continuous synthesis of silicon carbide whiskers, Journal of Materials Science, 30, 1982–1986 (1995).CrossRefGoogle Scholar
  45. [45]
    Mechanical properties of silicon carbide, Published search, NTIS Accession number: PB-95-854485, NERAC, Inc., Tolland, CT, February 1996.Google Scholar
  46. [46]
    T. V. Hughes and R. Chambers, U. S. Patent 405, 480, Manufacture of carbon filaments (1889).Google Scholar
  47. [47]
    G. G. Tibbetts, D. W. Gorkiewicz and. D. Hammond, Apparatus for forming carbon fibers, US Patent 5, 024, 818, June 18, 1991.Google Scholar
  48. [48]
    G. G. Tibbetts, D. W. Gorkewicz and R. I. Alig, Method for forming carbon fibers, US Patent 5, 413, 773, May 9, 1995.Google Scholar
  49. [49]
    M. Endo, T. Koyama, and Y. M. Hishiyama, Structural improvement of carbon fibers prepared from benzene, Japan J. Appl. Phys., 15, 2073 (1976).CrossRefGoogle Scholar
  50. [50]
    J. S. Speck and M. S. Dresselhaus, Graphitization of thin benzene derived carbon fibers, in Graphite Intercalation Compounds: Science and Applications, M. Endo, M. D. Dresselhaus, and G. Dresselhaus, Eds, Materials Research Society, p. 196 (1988).Google Scholar
  51. [51]
    J. A. Grande, Vapor-grown carbon fiber is a low-cost reinforcement, Modern Plastics, 41, December 1997.Google Scholar
  52. [52]
    T. W. Ebbessen, Carbon nanotubes, Physics Today, 26–32 (1996).Google Scholar
  53. [53]
    D. Ugarte, A Chatelain and W. A. de Heer, Nanocapillarity and chemistry in carbon nanotubes, Science, 274, 1887–1899 (1996).CrossRefGoogle Scholar
  54. [54]
    A. G. Rinzler, J. M. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomânek, D. T. Colbert, P. Nordlander and R. E. Smalley, Unraveling nanotubes: field emission from an atomic wire, Science, 269, 1550–1553 (1995).CrossRefGoogle Scholar
  55. [55]
    R. B. Marcus, T. S. Ravi, T. Gmitter, K. Chin, D. Liu, W. J. Orwis, D. R. Ciarlo, E. Hunt, and J. Trujillo, Formation of silicon tips with 1 um radius, Appl. Physics Letters, 56, 236–238 (1990).CrossRefGoogle Scholar
  56. [56]
    Y. A. Rovensky, A. D. Bershadsky, E. I. Givargizov, L. N. Obolenskaya and J. M. Vasiliev, Spreading of mouse fibroblasts on a substrate with multiple spikes, Experimental Cell Research, 197, 107–112 (1991).CrossRefGoogle Scholar
  57. [57]
    New standards make manufacturing silicon carbide whiskers safer, a review, ASTM Standardization News, 23, p. 11(1995)Google Scholar
  58. [58]G.
    L. Vaughn and S. A. Trently, The toxicity of silicon carbide whiskers, a review, Journal of Environmental Science and Health, Part A, 31[ 8], 2033–2054 (1996).CrossRefGoogle Scholar
  59. [59]
    Silicon carbide whisker composites, Published search, NTIF Accession number: PB-95-854667, NERAC, Inc., Tolland, CT, February 1996.Google Scholar
  60. [60]
    D. L. Jiang and J. H. Shea, Silicon carbide based composites, a review, Key Engineering Materials, 108-110, 67–84 (1995).CrossRefGoogle Scholar
  61. [61]
    G. G. Tibbetts, P. Beetz and G. Devour, Thin inorganic fibers, US Patent 5, 424, 126, June 13, 1995.Google Scholar
  62. [62]
    M. Ge and K. Sattler, How to grow buckytubes, Science, 260, 515–518 (1993)CrossRefGoogle Scholar
  63. [63]
    W. A. de Heer, A. Châtelain and D. Ugarte, A carbon nanotube field emission electron source, Science, 270, 1179–1180 (1995).CrossRefGoogle Scholar
  64. [64]
    M. Bockrath, D. H. Cobden, P. L. McEuen, N. Chopra, A. Zettl, A. Tess and R. E. Smalley, Single electron transport in ropes of carbon nanotubes, Science, 275, 1922–1925 (1997).CrossRefGoogle Scholar
  65. [65]
    D. S. Bethune, R. B. Beyers and H. Kiang, Carbon fibers and method for their production, US Patent 5, 424, 064, June, 13, 1995.Google Scholar
  66. [66]
    K. Uchida, M. Yumura, S. Ohshima, Y. Kuriki and F. Ikazaki, Process of isolating carbon nanotubes from a mixture containing carbon nanotubes and graphite particles, US Patent 5, 560, 898, October 1, 1996.Google Scholar
  67. [67]
    K. Ohta and N. Hamada, High-molecular weight carbon materials and method for forming the same, US Patent 5, 4489, 477, February 06, 1996.Google Scholar
  68. [68]
    J. Gimzewski, M. Parrinello, and B. Reiht, Molecular recording/reproducing method and recording medium, US Patent 5, 547, 774, August 20, 1996.Google Scholar
  69. [69]
    Y. Feldman, E. Wasserman, D. J. Srolovitz and R. Tenne, High rate, gas-phase growth of M0S2 nested inorganic fullerenes and nanotubes, Science, 267, 222–225 (1995).CrossRefGoogle Scholar
  70. [70]
    L. Venema, J. W. Wildöer, J. W. Janssen, S. J. Tans, H. L. J. Temminick Tuinstra, L. P. Kouwenhoven and Dekker, Imaging electron wave functions as quantized energy levels in carbon nanotubes, Science, 283, 52–55 (1999).CrossRefGoogle Scholar
  71. [71]
    A. Fisher, Do-it-yourself molecules, Popular Science, p. 20, July 1998.Google Scholar
  72. [72]
    L. A. Chernozatonskii, Z. Ja. Kosakovskaja, A. N. Kiselev, N. A. Kiselev, Carbon films of oriented multilayered nanotubes deposited on KBr and glass by electron beam evaporation, Chem. Phys. Letters, 228, 94–99 (1994).CrossRefGoogle Scholar
  73. [73]
    M. W. Browne, A microscopic revolution — nanotubes expected to replace silicon devices, in International Herald Tribune, page 10, February 19, 1998.Google Scholar
  74. [74]
    A. M. Morales, and M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 279, 208–210 (1998).CrossRefGoogle Scholar
  75. [75]
    M. A. Rodriguez, F. J. Limpo, J. A. Escriña, N. S. Makhonin, M. I. Osendi, M. F. Barba, J. E. Iglesias and J. S. Moya, Single crystal SiAION fibers obtained by self-propagating high-temperature synthesis, Scripts Materialia, 37[4], 405–410 (1997).CrossRefGoogle Scholar
  76. [76]
    M. S. Dresselhaus, G. Dresselhaus and P. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).Google Scholar
  77. [77]
    J. H. Choy and Y. S. Han, A combinative flux evaporation — slow cooling route to potassium titanate fibres, Materials Letters, 34, 111–118 (1998).CrossRefGoogle Scholar
  78. [78]
    S. B. Sinnott, A. Shenderova, White and D. W. Brenner, Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations, Carbon, 36[1-2], 1–9 (1998).CrossRefGoogle Scholar
  79. [79]
    M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Nature, 381, 678 (1996).CrossRefGoogle Scholar
  80. [80]
    H. G. Craighead, S. W. Turner, R. Davis, James, A. M. Perez, L. Kam, W. Shain, N. J. Turner and G. Banker, Chemical and topographical surface modification for control of central nervous system cell adhesion, Biomedical Microdevices, submitted for publication (1998).Google Scholar
  81. [81]
    J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, Shelimov, Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Fullerene pipes, Science, 280, 1253–1255 (1998).CrossRefGoogle Scholar
  82. [82]
    S. Frank, P. Poncharal, Z. L. Wang and W. A. de Heer, Carbon nanotube quantum resistors, Science, 280, 1744–1746 (1998).CrossRefGoogle Scholar
  83. [83]
    John V. Milewski and H. S. Katz, Handbook of Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1987).Google Scholar

Copyright information

© Kluwer Academic Publisher 2000

Authors and Affiliations

  • Fred Wallenberger

There are no affiliations available

Personalised recommendations