Advertisement

ADP-Ribosylation of Topoisomerase II in Physiological Conditions

  • A. I. Scovassi
  • M. Negroni
  • C. Mariani
  • L. Clerici
  • C. Negri
  • U. Bertazzoni
Conference paper

Abstract

ADP-ribosylation is known to play an important role in the modulation of chromatin structure, possibly by changing the affinity of histones to DNA and by interfering with the activity of enzymes which are responsible for condensation and decondensation processes (1, 2). Several nuclear proteins have been found to be ADP-ribosylated in reconstituted systems (for a review, see 1). However, it is not yet clear which are the real acceptors in physiological conditions. In fact, beside poly(ADP-ribose)polymerase itself (3, 4), only histones (5), topoisomerase I (6, 7) and high and low mobility group proteins (8) have been recognized to be modified by poly(ADP-ribose) in intact eukaryotic systems.

Keywords

HeLa Cell Reconstituted System Label Nucleic Acid HeLa Cell Nucleus Permeabilized HeLa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, F.R., Richter, C. (1987) Molecular Biology Biochemistry and Biophysics, 37 M. Solioz (ed.), Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  2. 2.
    Bertazzoni, U., Scovassi, A.I., Shall, S. (1989) Mutation Res 219: 303–307PubMedCrossRefGoogle Scholar
  3. 3.
    Ogata, N., Ueda, K., Kawaichi, M., Hayaishi, (1981) J Biol Chem 256:4135–4137PubMedGoogle Scholar
  4. 4.
    Adolph, K.W., Song, M.K.H. (1985) Biochemistry 24: 345–352PubMedCrossRefGoogle Scholar
  5. 5.
    Krupitza, G., Cerutti, P. (1989) Biochemistry 28: 4054–4060PubMedCrossRefGoogle Scholar
  6. 6.
    Adamietz, P. (1985) ADP-ribosylation of proteins F.R. Althaus, H. Hilz, S. Shall (eds.), Springer-Verlag, Berlin, Heidelberg, pp. 264–271CrossRefGoogle Scholar
  7. 7.
    Krupitza, G., Cerutti, P.(1989) Biochemistry 28: 2034–2040PubMedCrossRefGoogle Scholar
  8. 8.
    Quesada, P., Farina, B., Jones, R. (1989) Biochim Biophys Acta 1007: 167–175PubMedCrossRefGoogle Scholar
  9. 9.
    Darby, M.K., Schmitt, B., Jongstra-Bilen, J., Vosberg, H.P. (1985) EMBO J 4: 2129–2134PubMedGoogle Scholar
  10. 10.
    Adamietz, P., Hilz, H. (1984) Methods in Enzymology 106: 461–471PubMedCrossRefGoogle Scholar
  11. 11.
    Negri, C., Chiesa, R., Cerino, A., Bestagno, M., Sala, C., Zini, N., Maraldi, N.M., Astaldi Ricotti G.C.B. Submitted for publicationGoogle Scholar
  12. 12.
    Surowy, C.S., Berger, N.A. (1983) Biochim Biophys Acta 740: 8–18PubMedCrossRefGoogle Scholar
  13. 13.
    Drake, F.H., Hofmann, G.A., Bartus, H.F., Mattern, M.R., Crooke, S.T., Mirabelli, C.K. (1989) Biochemistry 28: 8154–8160PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • A. I. Scovassi
    • 1
  • M. Negroni
    • 1
  • C. Mariani
    • 1
  • L. Clerici
    • 2
  • C. Negri
    • 1
  • U. Bertazzoni
    • 1
  1. 1.Istituto Genetica Biochimica Evoluzionistica CNRPaviaItaly
  2. 2.Joint Research Center CECIspraItaly

Personalised recommendations