Advertisement

Relative and Absolute Pitch Perception Explained by Common Neuronal Mechanisms

  • Gerald Langner

Abstract

Pitch is a perceptual attribute of acoustic signals which like the visual attribute colour may be used to distinguish and characterize objects in our environment. However, unlike the fundamentals of colour perception the fundamental neuronal mechanisms of pitch perception are still under debate. Moreover, there is still no consensus about the actual physical parameter corresponding to pitch. Some theories (Terhardt, 1972; Wightman, 1973; Goldstein, 1973) are based on the assumption that frequency components resolved by the auditory analysis are essential for pitch perception. Other theories assume that a temporal analysis of periodicity information has to supplement the restricted frequency analysis.

Keywords

Inferior Colliculus Periodicity Code Absolute Pitch Dorsal Cochlear Nucleus Guinea Fowl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnea, A., Granot, R., and Pratt, H. (1994) Absolute pitch-electrophysiological evidence, Int. J. Psychophysiol. 16, 29–38.PubMedCrossRefGoogle Scholar
  2. Boer, E.de (1956) Pitch of inharmonic signals, Nature 178, 535–536.CrossRefGoogle Scholar
  3. Burns, E.M. and Campbell, S.L. (1994) Frequency and frequency-ratio resolution by possessors of absolute and relative pitch: Examples of categorical perception, J. Acoust. Soc. Am., 96, 2704–2719.PubMedCrossRefGoogle Scholar
  4. Emde, C. and Klinke, R. (1977) Does absolute pitch depend on an internal clock? In: M. Portman and J.M. Aran (eds.) 1NSERM, vol. 68, 145–146.Google Scholar
  5. Frisina, R.D., Smith, R.L., and Chamberlain, S.C. (1990) Encoding of amplitude modulation of the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hearing Res. 44, 99–122.CrossRefGoogle Scholar
  6. Goldstein, J.L. (1973). An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54, 1496–1516.PubMedCrossRefGoogle Scholar
  7. Harrer, G., Harrer, H., Mayr, A. (1979) Die Beeinflussbarkeit des absoluten Gehörs und des rhythmisch-musikalischen Zeitgefühls durch besondere Einwirkungen (Alkohol bzw. Überwärmung). In: C. Simon (Ed.). Mensch und Musik, Müller, Salzburg.Google Scholar
  8. Heil. P., Schulze. H., and Langner. G. (1995) Ontogenetic development of periodicity coding in the 1C of the mon-golian gerbil, Aud. Neurose. 1, 363–383.Google Scholar
  9. Kazdin. A. (1989) Glenn Gould at work, creative lying. E.P. Dutton, New York.Google Scholar
  10. Jähn-Siebert, T.K. and Langner. G. (1995) Afferent innervation and intrinsic connections of isofrequency sheets in the central nucleus of the inferior colliculus (ICC) in the Chinchilla-A double retrograde tracer study. In: N. Eisner and R. Menzel (Eds.). Learning and Memory. Thieme Stuttgart, p. 318.Google Scholar
  11. Langner, G. (1981) Neuronal mechanisms for pitch analysis in the time domain, Exp. Brain Res. 44, 450–454.PubMedCrossRefGoogle Scholar
  12. Langner, G. (1983) Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pitch analysis in the time domain, Exp. Brain Res. 52, 333–355.PubMedCrossRefGoogle Scholar
  13. Langner, G. (1988) Physiological properties of units in the cochlear nucleus are adequate for a model of periodicity analysis in the auditory midbrain. In: J. Syka and R.B. Masterton (Eds.) Auditory Pathway — Structure and Function, Plenum Press, New York, London,, pp. 207–212.CrossRefGoogle Scholar
  14. Langner, G. (1992) Periodicity coding in the auditory system. Hearing Res. 60, 115–142.CrossRefGoogle Scholar
  15. Langner, G. and Schreiner, C.E. (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mecha-nisms, J. Neurophysiol. 60, 1799–1822.PubMedGoogle Scholar
  16. Langner, G. and Bleeck, S. (1996). Neuronal processing of periodicity pitch may explain the difference between ‘relative’ and ‘absolute’ pitch perception. Soc. Neurosci. Abstr. 22, p. 1624.Google Scholar
  17. Langner, G., Sams, M., Heil, P., and Schulze, H. (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: Evidence from magnetoencephalography. J. Comp. Phys., (submitted).Google Scholar
  18. Moore, J.K.. and Osen, K.K. (1979) The human cochlear nuclei. In: O. Creutzfeldt, H. Scheich, and C. Schreiner (Eds.) Hearing Mechanisms and Speech, Springer, Berlin, pp. 36–44.CrossRefGoogle Scholar
  19. Oertel, D., Wu, S.H., Garb, M.W., and Dizack, C. (1990). Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J.Comp.Neurol. 295, 136–154.PubMedCrossRefGoogle Scholar
  20. Palmer, A.R. (1982) Encoding of rapid amplitude fluctuations by cochlear nerve fibres in the guinea pig, Arch. Otorhinolaryngol. 236, 197–202.PubMedCrossRefGoogle Scholar
  21. Pfeiffer, R.R. (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone-burst stimulation. Exp. Brain Res. 1, 220–235.PubMedCrossRefGoogle Scholar
  22. Rhode, W.S., Oertel, D., and Smith, P.H. (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J.Comp.Neurol. 213, 448–463.PubMedCrossRefGoogle Scholar
  23. Schouten, J.F. (1940) The perception of pitch. Philips Techn. Rev. 5, 286–294.Google Scholar
  24. Schouten, J.F., Ritsma, R.J., and Cardozo. B.L. (1962) Pitch of the residue. J. Acoust. Soc. Am. 34, 1418–1424.CrossRefGoogle Scholar
  25. Schouten, J.F. (1970) The residue revisited. In; R. Plomp and G.F. Smoorenburg (Eds.) Frequency Analysis and Periodicity Detection in Hearing. Sijthoff, Leiden, pp. 41–54.Google Scholar
  26. Schreiner, C. and Langner. G. (1988) Periodicity coding in the inferior colliculus of the cat. 11.Topographical or-ganization, J. Neurophys. 60, 1823–1840.Google Scholar
  27. Smith, R.L. (1979) Adaptation, saturation, and physiological masking in single auditory-nerve fibers. J. Acoust. Soc. Am. 650, 1660–1780.Google Scholar
  28. Smoorenburg, G.F. (1970) Pitch perception of two-frequency stimuli. J. Acoust. Soc. Am. 48, 924–942.PubMedCrossRefGoogle Scholar
  29. van Stokkum, I.H.M. (1987) Sensitivity of neurons in the dorsal medullary nucleus of the grassfrog to spectral and temporal characteristics of sound. Hearing Res. 29, 223–235.CrossRefGoogle Scholar
  30. Terhardt, E. (1972) Zur Tonhöhenwahrnehmung von Klängen. II. Ein Funktionsschema. Acustica 26, 187–199.Google Scholar
  31. Wightman. F.L. (1973). The pattern-transformation model of pitch. J. Acoust. Soc. Am. 54, 407–416.PubMedCrossRefGoogle Scholar
  32. Wever, E.G. (1949) Theory of Hearing, Wiley, New York.Google Scholar
  33. Wynn. V.T. (1971) “Absolute” pitch — a bimensual rhythm. Nature 230, 337.PubMedCrossRefGoogle Scholar
  34. Zhao, H.-B. and Liang, Z.-A. (1995) Processing of modulation frequency in the dorsal cochlear nucleus of the guinea pig: Amplitude modulated tones. Hearing Res. 82, 244–256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gerald Langner
    • 1
  1. 1.Institute of ZoologyTHDDarmstadtGermany

Personalised recommendations