Skip to main content

Evidence for Rapid Functional Reorganization in Inferior Colliculus and Cochlear Nucleus

  • Chapter

Abstract

During development, the neural circuits in the central auditory pathway are laid down and fine tuned; however, once adulthood is reached, it has generally been assumed that the neural circuits remain stable throughout the life span. Recent studies in the somatosensory and visual system have challenged this hard wired view of the nervous system since extensive remodeling and reorganization occur in both somatosensory and visual pathways when their peripheral inputs are either temporarily or permanently eliminated (Eysel et al., 1980, 1981; Merzenich and Kaas, 1982; Kaas et al., 1990). Because of the relative ease of deafferenting a specific segment of the peripheral receptor surface, the somatosensory system has been one of the most popular systems for studying the reorganization of the central nervous system. A striking example of the rapid reorganization that can occur in the somatosensory cortex is illustrated by studies in which the peripheral inputs from a specific digit or peripheral nerve is temporarily or permanently eliminated by chemical or surgical means (Dostrovsky et al., 1976; Devor and Wall, 1981; Calford and Tweedale, 1988). For example, some neurons in the somatosensory cortex have excitatory receptive fields that are only activated by mechanical stimulation delivered to a specific digit. If the peripheral inputs that activate the neuron are eliminated by amputating or anesthetizing the digit, the neuron does not become “silent” or inactive, but instead, rapidly shifts it excitatory receptive field to an adjacent region of the body surface to which it was originally unresponsive (Calford and Tweedale, 1988). This rapid reorganization is presumably due to the unmasking of the system’s intrinsic neural networks which were originally “covered over” by powerful inhibitory circuits. Functional reorganization is not unique to the somatosensory cortex. Indeed, it has been observed at the level of the brainstem and spinal cord following peripheral damage (Dostrovsky et al., 1976; Devor and Wall, 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. C. (1979) Ascending projections to the inferior colliculus. J. Comp. Neurol. 182, 519–538.

    Article  Google Scholar 

  • Adams, J. C. and Warr, W. B. (1976) Origins of axons in the cat’s acoustic striate determined by injection of horseradish peroxidase into severed tracts. J. Comp. Neurol. 170, 107–122.

    Article  PubMed  CAS  Google Scholar 

  • Arehole, S., Salvi, R. J., Saunders, S. S. and Hamernik, R. P. (1987) Evoked response ‘forward masking’ functions in chinchillas. Hear. Res. 30, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Boettcher, F. A. and Salvi, R. J. (1993) Functional changes in the ventral cochlear nucleus following acute acoustic overstimulation. J. Acoust. Soc. Am. 94, 2123–2134.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B. and Tweedale, R. (1988) Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature 332, 446–448.

    Article  PubMed  CAS  Google Scholar 

  • Devor, M. and Wall, P. D. (1981) Plasticity in the spinal cord sensory map following peripheral nerve injury in rats. J. Neurophysiol. 55, 679–684.

    Google Scholar 

  • Dostrovsky, J. O., Millar, J. and Wall, P. D. (1976) The immediate shift of afferent drive of dorsal column nucleus cells following deafferentation: A comparison of acute and chronic deafferentation in gracile nucleus and spinal chord. Exp. Neurol. 52, 480–495.

    Article  PubMed  CAS  Google Scholar 

  • Eysel, U. T., Gonalez-Aguilar, F. and Mayer, U. (1980) A functional sign of reorganization in the visual system of adult cats: Lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina. Brain Res. 191, 285–300.

    Article  Google Scholar 

  • Eysel, U. T., Gonzalez-Aguilar, F. and Mayer, U. (1981) Time-dependent decrease in the extent of visual deaffer-entation in the lateral geniculate nucleus of adult cats with small retinal lesions. Exp. Brain Res. 41, 256–263.

    Article  PubMed  CAS  Google Scholar 

  • Faingold, C. L., Boersma Anderson, C. A. and Caspary, D. M. (1991) Involvement of GABA in acoustically-evoked inhibition in inferior colliculus. Hear. Res. 52, 201–216.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. V., Nagasawa, A., Smith, D. W., Stanton, S. and Mount, R. J. (1991) Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hear. Res. 54, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. V., Smith, D. W., Nagasawa, A. and Mount, R. J. (1992) Developmental plasticity of auditory cortex in cochlear hearing loss: Physiological and psychophysical findings. Adv. Biosci. 83, 625–633.

    Google Scholar 

  • Hicks, T. P. and Dykes, R. W. (1983) Receptive field size for certain neurons in the primary somatosensory cortex is determined by BAS-mediated intracortical inhibition. Brain Res. 274, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., Kmbitzer, L. A., Chino, Y. M., Langsten, A. L., Polley, E. H. and Blair, N. (1990) Reorganization of retinotopic maps in adult mammals after lesions of the retina. Sei. 248, 229–231.

    CAS  Google Scholar 

  • Liberman, M. C, Dodds, L. W. and Learson, D. A. (1986) Structure-function correlation in noise-damaged ears: A light and electron-microscopic study. In: R. J. Salvi, R. P. Hamernik, D. Henderson and V. Colletti (Eds.), Basic and Applied Aspects of Noise Induced Hearing Loss, Plenum Press, pp. 163–177.

    Google Scholar 

  • Merzenich, M. M. and Kaas, J. H. (1982) Organization of Mammalian somatosensory cortex following peripheral nerve injury. Trends Neurosci. 5, 4428–4436.

    Article  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J. and Felleman, D. J. (1983) Progressive change following median nerve section in the cortical representation of the hand in area 3b and 1 in adult owl and squirrel monkeys. Neurosci. 10, 639–665.

    Article  CAS  Google Scholar 

  • Osen, K. K. (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J. Comp. Neurol. 144, 355–372.

    Article  PubMed  CAS  Google Scholar 

  • Palombi, P. S. and Caspary, D. M. (1992) GABAA receptor antagonist bicuculline alters response properties of posteroventral cochlear nucleus neurons. J. Neurophysiol. 67, 738–746.

    PubMed  CAS  Google Scholar 

  • Pons, T., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., Taub. E. and Mishkin, M. (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Sci. 252, 1857–1860.

    Article  CAS  Google Scholar 

  • Popelar, J., Syka, J. and Berndt, H. (1987) Effect of noise on auditory evoked responses in awake guinea pigs. Hear. Res. 26, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D. and Irvine, D. R. F. (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282, 456–471.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, R. J., Ahroon, W. A., Perry. J., Gunnarson, A. and Henderson. D. (1982) Psychophysical and evoked-re-sponse tuning curves in the chinchilla. Am. J. Otolaryngology 3, 408–416.

    Article  CAS  Google Scholar 

  • Salvi, R. J., Saunders, S. S., Gratton. M. A., Arehole. S. and Powers, N. (1990) Enhanced evoked response ampli-tudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear. Res. 50, 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Salvi, R. J., Powers, N. L., Saunders, S. S., Boettcher, F. A. and Clock, A. E. (1992) Enhancement of evoked re-sponse amplitude and single unit activity after noise exposure. In: A. Dancer, D. Henderson, R. J. Salvi and R. Hamernik (Eds.), Noise-Induced Hearing Loss, Mosby Year Book, pp. 156–171.

    Google Scholar 

  • Saunders, J. C., Bock, G. R., James, R. and Chen, C. S. (1972) Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB/c mice. Exp. Neurol. 37, 388–394.

    Article  PubMed  CAS  Google Scholar 

  • Spongr, V. P., Flood, D. G., Frisina, R. D. and Salvi, R. J. (submitted) Quantitative measure of hair cell loss in CBA and C57BL/6 mice throughout their life spans. J. Acoust. Soc. Am.,.

    Google Scholar 

  • Suga. N. and Tsuzuki, K. (1985) Inhibition and level-tolerant frequency tuning in the auditory cortex of the mus-tached bat. J. Neurophysiol. 53, 1125–1145.

    Google Scholar 

  • Syka, J., Rybalko, N. and Popelar, J. (1994) Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure. Hear. Res. 78, 158–168.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Salvi, R. J., Caspary, D. M. and Powers, N. (1996a) GABAergic inhibition profoundly alters the tuning and discharge rate of neurons in the primary auditory cortex of the chinchilla. Abstr. Assoc. Res. Otolaryngol. 19, 156.

    Google Scholar 

  • Wang, J., Salvi, R. J. and Powers, N. (1996b) Rapid functional reorganization in inferior colliculus neurons following acute cochlear damage. J. Neurophysiol. 75, 171–183.

    PubMed  CAS  Google Scholar 

  • Willott, J. F., Demuth, R. M. and Lu, S.-M. (1984) Excitability of auditory neurons in the dorsal and ventral cochlear nuclei of DBA/2 and C57BL/6 mice. Exp. Neurol. 83, 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Willott, J. F., Aitkin, L. M. and McFadden, S. L. (1993) Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. J. Comp. Neurol. 329, 402–411.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Pollack, G. D. and Rester, C. (1992) GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J. Neurophysiol. 68, 1760–1774.

    PubMed  CAS  Google Scholar 

  • Young, E. (1984) Response characteristics of neurons of the cochlear nucleus. In: C. Berlin (Ed.). Hearing Science, College-Hill, pp. 423–460.

    Google Scholar 

  • Young, E. D. and Brownell. W. E. (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J. Neurophysiol. 39, 282–300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salvi, R.J., Wang, J. (1997). Evidence for Rapid Functional Reorganization in Inferior Colliculus and Cochlear Nucleus. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics