Advertisement

Speech Representation in the Auditory Nerve and Ventral Cochlear Nucleus

Quantitative Comparisons
  • Brad J. May
  • Glenn S. Le Prell
  • Robert D. Hienz
  • Murray B. Sachs

Abstract

The representation of speech-like stimuli in the auditory nerve and cochlear nucleus have been the subject of numerous studies over the past 20 years (Blackburn and Sachs, 1990; Geisler, 1988; Kiang and Moxon, 1974; Palmer, et al., 1986; Sachs and Young, 1979; Young and Sachs, 1979). In both the auditory nerve and cochlear nucleus, for exam- ple, the spectra of vowels can be represented in terms of average rate (Sachs and Young, 1979) or the temporal patterns of firing (phase-locking; Blackburn and Sachs, 1990; Young and Sachs, 1979) or a combination of the two (Blackburn and Sachs, 1990; Young and Sachs, 1979). In this chapter we focus on average rate representations.

Keywords

Auditory Nerve Cochlear Nucleus Good Frequency Ventral Cochlear Nucleus Selective Listening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, M. I., & Sachs, M B. (1991). Regularity analysis in a compartmental model of chopper units in the an-teroventral cochlear nucleus. J. Neurophysiol., 65, 606–629.PubMedGoogle Scholar
  2. Bata, P. E.(1985) Testing Stimulus Encoding in the Auditory Nerve. Ph.D., Johns Hopkins University.Google Scholar
  3. Blackburn, C. C, & Sachs, M. B. (1989). Classification of unit types in the anteroventral cochlear nucleus: post-stimulus time histograms and regularity analysis. J. Neurophysiol., 62, 1303–1329.PubMedGoogle Scholar
  4. Blackburn, C. C, & Sachs, M. B. (1990). The representation of the steady-state vowel /eh/ in the discharge pat-terns of cat anteroventral cochlear nucleus neurons. J. Neurophysiol., 63, 1191–1212.PubMedGoogle Scholar
  5. Bourk, T. R. (1976) Electrical Responses of Neural Units in the Anteroventral Cochlear nucleus of the Cat. Ph.D., Massachusetts Institute of Technology.Google Scholar
  6. Cant, N. B. (1981). The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience, 6, 2643–2655.PubMedCrossRefGoogle Scholar
  7. Conley, R. A., & Keilson, S. E. (1995). Rate representation and discriminability of second formant frequencies for /ɛ/-like steady-state vowels in cat auditory nerve. J. Acoust. Soc. Am., 98, 3223–3234.PubMedCrossRefGoogle Scholar
  8. Delgutte, B. (1982). Some correlates of phonetic distinctions at the level of the auditory nerve. In R. Carlson & B. Granstrom (Eds.), The representation of speech in the peripheral auditory system (pp. 131–149). Amsterdam: Elsevier Biomdical Press.Google Scholar
  9. Fekete, D. M., Rouiller, E. M, Liberman, M. C, & Ryugo, D. K. (1982). The central projections of intrecellularly labeled auditory nerve fibers in cats. J. Comp. Neurol., 229, 432–450.CrossRefGoogle Scholar
  10. Geisler, C. D. (1988). Representation of speech sounds in the auditory nerve. J. Phonetics, 16, 20–35.Google Scholar
  11. Green, D. M., & Swets, J. A. (1974). Signal Detection Theory and Psychophysics. New York: Krieger.Google Scholar
  12. Hienz, R. D., Sachs, M. B., & Aleszczyk, C. M. (1993). Frequency discrimination in Noise: Comparison of cat cerformance with auditory-nerve models. J. Acoust. Soc. Am., 93, 462–469.PubMedCrossRefGoogle Scholar
  13. Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J. Acoust. Soc. Am., 68, 1115–1122.PubMedCrossRefGoogle Scholar
  14. Keilson, S. E., Richards, V. M, Wyman, B. T., & Young, E. D. (1995). Pitch-tagged spectral representations in the cochlear nucleus. ARO Abstr., 18, 128.Google Scholar
  15. Kiang, N. Y.-S., & Moxon, E. C. (1974). Tails of tuning curves of auditory nerve fibers. J. Acoust. Soc. Am., 55, 620–630.PubMedCrossRefGoogle Scholar
  16. Koch, C, Poggio, T., & Torre, V. (1982). Retinal ganglion: A functional interpretation of dendritic morphology. Phil. Trans. R. Soc. London B, 227, 227–264.CrossRefGoogle Scholar
  17. Lai, Y. C, Winslow, R. L., & Sachs, M. B. (1994). The functional role of excitatory and inhibitory interactions in chopper cells of the anteroventral cochlear nucleus. Neural Computation, 6, 1127–1140.CrossRefGoogle Scholar
  18. Lai, Y. C, Winslow, R. L., & Sachs, M. B. (1994.). A model of selective processing of auditory-nerve inputs by stellate cells of the anteroventral cochlear nucleus. J. Computational Neurosci., 1, 167–194.CrossRefGoogle Scholar
  19. Le Prell, G., Sachs, M. B., & May, B. J. (1996). Representation of vowel-like spectra by discharge rate responses of individual auditory-nerve fibers. Auditory Neurosci., 2, 275–288.Google Scholar
  20. Liberman, M. C. (1978). Auditory-nerve responses from cats raised in a low-noise chamber. J. Acoust. Soc. Am., 63, 442–455.PubMedCrossRefGoogle Scholar
  21. Liberman, M. C. (1991). Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. J. Comp. Neurol., 313, 240–258.PubMedCrossRefGoogle Scholar
  22. May, B. J., Huang, A., LePrell, G., & Hienz, R. D. (1996). Vowel formant frequency discrimination in cats: Comparison of auditory nerve representations and psychophysical thresholds. Aud. Neurosci., 3, 135–162.Google Scholar
  23. Oppenheim, A. V., & Wilsky, A. S. (1983). Signals and Systems. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  24. Palmer, A. R., Winter, I. M., & Darwin, C. J. (1986). The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primary-like cochlear nucleus neurons. J. Acoust. Soc. Am., 79, 100–113.PubMedCrossRefGoogle Scholar
  25. Rhode, W. S., Oertel, D., & Smith, P. H. (1983). Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J. Comp. Neurol., 213, 448–463.PubMedCrossRefGoogle Scholar
  26. Rice, J. J., Young, E. D., & Spirou, G. A. (1995). Auditory-nerve encoding of pinna-based spectral cues: Rate representation of high-frequency stimuli. J. Acoust. Soc. Am., 97, 1764–1776.PubMedCrossRefGoogle Scholar
  27. Rouiller, E. M., Cronin-Schreiber, R., Fekete, D. M., & Ryugo, D. K. (1986). The central projections of intreceilu-larly labeled auditory nerve fibers in the cat. J. Comp. Neurol., 249, 261–278.PubMedCrossRefGoogle Scholar
  28. Rouiller, E. M., & Ryugo, D. K. (1984). Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J. Comp. Neurol., 255, 167–186.CrossRefGoogle Scholar
  29. Ryugo, D. K., & Rouiller, E. M. (1988). Central projections of intrecellularly labeled auditory nerve fibers in the cat: Morphometric correlation with physiological properties. J. Comp. Neurol., 271, 130–142.PubMedCrossRefGoogle Scholar
  30. Ryugo, D. K., & Sento, S. (1991). Synaptic connection of the auditory nerve in cats: Relationship between end-bulbs of Held and spherical bushy cells. J. Comp. Neurol., 309, 35–48.CrossRefGoogle Scholar
  31. Sachs, M. B., Winslow, R. L., & Sokolowski, B. A. H. (1989). A computational model for rate-level functions from cat auditory-nerve fibers. Hear. Res., 41, 61–70.PubMedCrossRefGoogle Scholar
  32. Sachs, M. B., & Young, E. D. (1979). Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate. J. Acoust. Soc. Am., 66, 470–479.PubMedCrossRefGoogle Scholar
  33. Siebert, W. M. (1970). Frequency discrimination in the auditory system: Place or periodicity mechanisms? Proc. IEEE, 58, 723–730.CrossRefGoogle Scholar
  34. Smith, P. H., & Rhode, W. S. (1989). Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comp. Neurol., 282, 595–616.PubMedCrossRefGoogle Scholar
  35. Sokolowski, B. A. H., Sachs, M. B., & Goldstein, J. L. (1989). Auditory nerve rate-level functions for two-tone stimuli: Possible relation to basilar membrane nonlinearity. Hear. Res., 41, 15–124.CrossRefGoogle Scholar
  36. Winslow, R. L., Barta, P. E., & Sachs, M. B. (1987). Rate coding in the auditory nerve. In W. A. Yost & C. S. Watson (Eds.), Auditory Processing of Complex Sounds (pp. 212–224). Hillsdale, N.J.: Lawrence Erlbaum Assoc.Google Scholar
  37. Yates, G. K., Winter, I. M., & Robertson, D. R. (1990). Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hearing Res., 45, 203–220.CrossRefGoogle Scholar
  38. Young, E. D., & Sachs, M. B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J. Acoust. Soc. Am., 66, 1381–1403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Brad J. May
    • 1
  • Glenn S. Le Prell
    • 2
  • Robert D. Hienz
    • 3
  • Murray B. Sachs
    • 1
    • 2
  1. 1.Center for Hearing Sciences and Department of Otolaryngology-HNSJohns Hopkins University School of MedicineUSA
  2. 2.Center for Hearing Sciences and Department of Biomedical EngineeringJohns Hopkins University School of MedicineUSA
  3. 3.Center for Hearing Sciences and Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineUSA

Personalised recommendations