Skip to main content

Representation of Amplitude Modulated Sounds in Two Fields in Auditory Cortex of the Cat

  • Chapter
Acoustical Signal Processing in the Central Auditory System

Abstract

Temporally structured sounds such as sine or square-wave modulated carriers and periodic click trains are represented somewhat differently in separate cortical fields in cat (Schreiner and Urbas, 1988) but less so in squirrel monkey (Bieser and Müller-Preuss, 1996). Representation of these complex sounds in cortex has been observed as a modu- lated-rate (AM) wide-band noise (Eggermont, 1993). The average higher BMF in AAF appeared largely due to values obtained in units with CFs above 10 kHz, for lower CFs all BMFs were below 20 Hz. In awake squirrel monkeys Bieser and Müller-Preuss (1996) found a broad range of BMFs from 2 — 128 Hz with a sharp reduction in the number of units with BMFs above 16 Hz. Low modulation frequencies (2 - 64 Hz) were mostly encoded by phase-locked neural responses and higher AM (128 - 512 Hz) sounds showed a distinction in overall-spike-rate variations. A similar view is offered by the recordings of Steinschneider et al. (1980, 1982) in auditory cortex of awake macaques: they found phase-locked activity in the depth-recorded local field potentials up to 250 Hz and for multi-unit activity up to 100 Hz. Because AI and AAF receive similar anatomical projections from the medial geniculate body (MGB; Rouiller et al., 1991) one expects the reason for these apparent differences in the two primary fields of the cat to reside in intrinsic cell properties or in intra-cortical network properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, M. (1982) Local cortical circuits: An electrophysiological study. Berlin, Springer Verlag.

    Book  Google Scholar 

  • Bieser, A. and Müller-Preuss, P. (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp. Brain Res. 108, 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Capranica, R.R. and Rose, G. (1983) Frequency and temporal processing in the auditory system of anurans. In: F. Huber and H. Markl (Eds.), Neuroethology and behavioral physiology. Springer Verlag, Berlin. pp. 136–152.

    Chapter  Google Scholar 

  • Cariani, P. (1994) As if time really mattered: temporal strategies for neural coding of sensory information. Comm. Cogn. Art. Intell. 12, 157–219.

    Google Scholar 

  • DcHaene, S. (1993) Temporal oscillations in human perception. Psychological Science 4, 264–270.

    Article  Google Scholar 

  • Eggermont, J.J. (1990) Temporal modulation transfer functions for single neurons in the auditory midbrain of the leopard frog. Intensity and carrier-frequency dependence. Hearing Research 43, 181–198.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J.J. (1991) Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hearing Research 56: 153–167.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont. J.J. (1992) Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex. Hearing Research 61, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J.J. (1993) Differential effects of age on click-rate and amplitude modulation-frequency coding in primary auditory cortex of the cat. Hearing Research 65, 175–192.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont. J.J. (1994) Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity.Hearing Research 74, 51–66.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont. J.J. (1995a) Representation of a voice onset time continuum in primary auditory cortex of the cat..1. Acoust. Soc. Amer. 98, 91 1–920.

    Google Scholar 

  • Eggermont. J.J. (1995b) Neural correlates of gap detection and auditory fusion in cat auditory cortex. Neürorcport 6, 1645–1648.

    CAS  Google Scholar 

  • Eggermont, J.J. (1996) How homogeneous is cat primary auditory cortex? Evidence from simultaneous single-unit recordings. Auditory Neuroscience 2, 76–96.

    Google Scholar 

  • Eggermont, J.J. and Smith. G.M. (1995a) Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. J. Neurophysiology 73, 227–245.

    CAS  Google Scholar 

  • Eggermont, J.J. and Smith, G.M. (1995b) Separating local from global effects in neural pair correlograms. NeuroReport 6, 2121–2124.

    Article  PubMed  CAS  Google Scholar 

  • Epping, W.J.M. and Eggermont, J.J. (1986): Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound. Hearing Research 24: 55–72.

    Article  PubMed  CAS  Google Scholar 

  • Fassel, R. and Kohlrausch, A. (1995) Modulation detection as a function of carrier frequency and level. IPO Annual Progress Report 30, 21–29.

    Google Scholar 

  • Frisina, R.D., Smith, R.L. and Chamberlain, S.C. (1985) Differential encoding of rapid changes in sound amplitude by second-order auditory neurons. Exp. Brain Res. 60, 417–122.

    Article  PubMed  CAS  Google Scholar 

  • Geisler. W.S., Albrecht, D.G., Salvi, R.J. and Saunders, S.S. (1991) Discrimination performance of single neurons: rate and temporal-pattern information. J. Neurophysiology 66, 334–362.

    CAS  Google Scholar 

  • Goldstein, M.H., Kiang, N.Y-S. and Brown, R.M. (1959) Responses of the auditory cortex to repetitive acoustic stimuli. J. Acoust. Soc. Amer. 31, 356–364.

    Article  Google Scholar 

  • Hari, R. (199-) Temporal aspects of human auditory cortical processing, (this volume)

    Google Scholar 

  • Joris, P.X. and Yin, T.C.T. (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Amer. 91, 215–232.

    Article  CAS  Google Scholar 

  • Kirschfeld, K., Feiler, R. and Wolf-Oberhollenzer, F. (1996) Cortical oscillations and the origin of express sac-cades. Proc. R. Soc. Lond. B 263, 459–468.

    Article  CAS  Google Scholar 

  • Knudsen, E.I., du Lac, G. and Esterly, S.D. (1987) Computational maps in the brain. Ann. Revue of Neuroscience 10, 41–65.

    Article  CAS  Google Scholar 

  • König. P., Engel, A.K. and Singer, W. (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. TINS 19, 130–137.

    PubMed  Google Scholar 

  • Langner, G. (1992) Periodicity coding in the auditory system. Hearing Research 60: 115–142.

    Article  PubMed  CAS  Google Scholar 

  • Mason, A., Nicoll, A. and Stratford, K. (1991 ) Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J. Neuroscience 11, 72–84.

    CAS  Google Scholar 

  • Moller, A.R. (1972) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiol. Scand. 86, 223–238.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, D.L. (199) Synaptic domains in the central nucleus of the inferior colliculus. (this volume).

    Google Scholar 

  • Piesman. M., Chao, E.C., Gruen. E., Woody. CD. and Zotova, E. (1994) Inhibition of discharge in inferior colliculus. All cortex and EP cortex after presentations of click stimuli. Brain Research 657, 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Phillips. D.P. (1993) Representation of acoustic events in the primary auditory cortex. J. Exp. Psychology HEP 19, 203–216.

    Article  CAS  Google Scholar 

  • Phillips. D.P., Hall, S.E. and Hollett. J.L. (1989) Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. J. Acoust. Soc. Amer. 85, 2537–2549.

    Article  CAS  Google Scholar 

  • Puil, E., Ries, C.R., Schwas. D.W.F. Tennigkeit. F. and Yarom, Y. (199) Sleep-inducing and anesthetic actions of drugs on neurons of auditory thalamus, (this volume)

    Google Scholar 

  • Rees. A. and Moller. A.R. (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Research 10, 301–330.

    Article  PubMed  CAS  Google Scholar 

  • Rees, A. and Palmer, A.R. (1989) Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus. and their modification by broadband noise. J. Acoust. Soc. Amer. 85, 1978–1994.

    Article  CAS  Google Scholar 

  • Rouiller. E.M., de Ribaupierre, Y., Toros-Morel, A. and de Ribaupierre, F. (1981 ) Neural coding of repetitive clicks in the medial geniculate body of the cat. Hearing Research 5, 81–100.

    Article  PubMed  CAS  Google Scholar 

  • Rouiller, E.M., Simm, G.M., Villa. A.E.P., de Ribaupierre. Y. and de Ribaupierre, F. (1991) Auditory corticocorti-cal interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory areas. Exp Brain Res 86, 483–505.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, C.E. and Urbas, J.V. (1986) Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF). Hearing Research 21, 227–241.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, C.E. and Urbas. J.V. (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hearing Research 32, 49–64.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner. C.E. and Raggio. M.W. (1996) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. J. Neurophysiology 75, 1283–1300.

    CAS  Google Scholar 

  • Steinschneider, M., Arezzo, J. and Vaughan, H.G. (1980) Phase-locked cortical responses to a human speech sound and low-frequency tones in the monkey. Brain Research 198, 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Steinschneider. M., Arezzo. J. and Vaughan, H.G. (1982) Speech evoked activity in the auditory radiations and cortex of the awake monkey. Brain Research 252, 353–365.

    Article  PubMed  CAS  Google Scholar 

  • Theunissen, F. and Miller, J.P (1995) Temporal encoding in nervous systems: a rigorous definition. J. Computational Neuroscience 2, 149–162.

    Article  CAS  Google Scholar 

  • Varela, F.J., Toro, A., John, E.R. and Schwarz, E.L. (1981) Perceptual framing and the cortical alpha rhythm. Neuropsychologica 19, 675–686.

    Article  CAS  Google Scholar 

  • Viemeister, N. (1979) Temporal modulation transfer function based upon modulation thresholds, J. Acoust. Soc. Amer. 66, 1364–1380.

    Article  CAS  Google Scholar 

  • Wang, X., Merzenich, M.M., Beitel, R. and Schreiner, C.E. (1995) Representation of a species-specific vocaliza-tion in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J. Neurophysiology 74, 2685–2706.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eggermont, J.J. (1997). Representation of Amplitude Modulated Sounds in Two Fields in Auditory Cortex of the Cat. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics