Skip to main content

Diversity in Glycine and NMDA Receptor Subunit Composition in the Rat Cochlear Nucleus and Superior Olivary Complex and Changes with Deafness

  • Chapter
Acoustical Signal Processing in the Central Auditory System

Abstract

Much of the processing of ascending auditory information in the auditory brain stem is mediated by synapses using an excitatory or an inhibitory amino acid as transmitters and acting at an amino acid receptor. When adjacent sections are immunostained for gamma aminobutyric acid (GABA), glycine or glutamate, over 90% of the terminals on ventral cochlear nucleus and lateral superior olivary complex principal cells are im- munoreactive for one or more of these amino acids (Altschuler et al, 1993, Juiz et al, 1996, Helfert et al, 1992). While other neurotransmitters such as acetylcholine (e.g. Godfrey et al, 1993) and neuropeptides (e.g. Adams et al, 1993) also have important roles in the auditory brain stem and may often be co-contained in terminals with an amino acid transmitter, certainly amino acid transmitters and receptors have a major role in acoustic signal processing. There is now increasing information that the properties of excitatory and inhibitory amino acid synapses can be influenced by the composition of their receptors. The excitatory amino acid, most likely to be glutamate and the inhibitory amino acids GABA and glycine all act at ionotropic receptors whose properties can vary as a function of their subunit composition. These ionotropic receptors are pentamers with five mem-brane spanning subunits clustered around an ion channel. Depending upon which subunits a neuron uses to compose the complete receptor there can be different binding properties, actions on the ion channel and recovery at the synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, JC: Non-primary inputs to the cochlear nucleus visualized using immunocytochemistry, In: Merchan MA, Juiz JM, Godfrey DA & Mugnaini E (eds): Mammalian Cochlear Nuclei: Organization and Function, (Plenum Press, New York, 1993) 133–42.

    Chapter  Google Scholar 

  • Adams. JC (in press) Distribution of some cytochemically distinct cells in the ventral cochlear nucleus of cat and human with emphasis on octopus cells and their projections in “Advances in Speech, Hearing and Human Processing” Vol 3, W.A. Ainsworth (Ed) JAI Press, London.

    Google Scholar 

  • Altschuler, R. A., Betz. H., Parakkal, M. H., Reeks, K. A. and Wenthold, R. J. (1986) Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res., 369–320

    Google Scholar 

  • Altschuler, R.A., Juiz, JM, Shore, SE, Bledsoe, S.C., Helfert, RH. Wenthold RJ (1993) Inhibitory amino acid synapses and pathways in the ventral cochlear nucleus. In: Merchan MA, Juiz JM, Godfrey DA & Mugnaini E (eds): Mammallian Cochlear Nuclei: Organization and Function, (Plenum Press, New York, pp. 211–224.

    Chapter  Google Scholar 

  • Benson CG & Potashner SJ: Modulation of strychnine binding in the lateral lemniscal nucleus after cochlear ablation. Neurosciences Abstract (1995) 21:404

    Google Scholar 

  • Benson CG, Suneja SK and Potashner SJ (1995) Long-term regulation of glycine receptors in the adult guinea pig cochlear nucleus and superior olivary complex after unilateral cochlear ablation. Neurosciences Abstract 21:403

    Google Scholar 

  • Betz, H., Langosch, D., Hoch, W., Prior, P., Pribilla, I., Kuhse, J., Schmieden, V., Malosio, M.-L., Matzenbach, B. and Holzinger, F. (1991) Structure and expression of inhibitory glycine receptors. Ads. Exp. Med. Biol., 287, 421–429.

    Article  CAS  Google Scholar 

  • Bilak MM, Bilak SR and Morest DK. (1996) Differential expression of N-methyl-D-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience 75:1075–1098.

    Article  PubMed  CAS  Google Scholar 

  • Boettcher FA, Salvi RJ (1993) Functional changes in the ventral cochlear nucleus following acute acoustic over-stimulation. J Acoust Soc Am 94:2123–34

    Article  PubMed  CAS  Google Scholar 

  • Buller AL, Larson HC, Schneider BE, Beaton JA, Morrisett RA, Monaghan DT (1994) The molecular basis of NMDA receptor subtypes: Native receptor diversity is predicted by subunit composition. J Neurosci 9:5471–5484.

    Google Scholar 

  • Caspary, D.M., D.C. Havey, and C.L. Faingold (1979) Effects of microiontophoretically applied GLY and GABA on neuronal response patterns in the cochlear nuclei. Brain Res. 172:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, DM, Finlayson PG (1991) Superior Olivary Complex: Functional neuropharmacology of the major cell types. In RA Altschuler, RP Bobbin, BC Clopton and DW Hoffman (Eds), Neurobiology of Hearing: The Central Auditory System, Raven Press NY, pp 141–163

    Google Scholar 

  • Caspary, D. M., Palombi, P. S., Backoff, P.M., Helfert, R. H. and Finlayson, P. G. (1993) GABA and glycine inputs control discharge rate within the excitatory response area of primary-like and phase-locked AVCN neurons. In M.A. Merchan, J.M. Juiz, D.A. Godfrey & E. Mugniani (Eds) The Mammalian Cochlear Nuclei: Organization and Function, Plenum Press, New York, pp. 239–252.

    Chapter  Google Scholar 

  • Caspary, D.M. (1986) Cochlear nuclei: Functional neuropharmacology of the principal cell types. In R.A. Altschuler, D.W. Hoffmann, and R.P. Bobbin (Eds): Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 303–332.

    Google Scholar 

  • Caspary DM, Milbrandt JC and Helfert RH (1995) Central auditory aging: GABA changes in the inferior collicu-lus. Exp Gerontol. 30:349–60.

    Article  PubMed  CAS  Google Scholar 

  • Cik M, Chazot PL, Stephenson FA (1994) Expression of NMDARl-la (N598QVNMDAR2A receptors results in decreased cell mortality. Eur J Pharmacol 226:1–3.

    Google Scholar 

  • Collingridge GL, Herron CE, Lester RAJ (1988) Frequency-dependent N-methyl-D-aspartate receptor mediated synaptic transmission in the rat hippocampus. J Physiol (Lond) 399:301–312.

    CAS  Google Scholar 

  • Collingridge GL, Singer W (1990) Excitatory amino acid receptor and synaptic plasticity. Trends Pharmacol Sci 11:290–296.

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain focus on NMDA-receptor. Trends Neurosci 10:263–265.

    Article  CAS  Google Scholar 

  • Durand GM, Gregor P, Zheng X, Bennett MVL, Uhl GR, Zukin RS (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89:9359–9363.

    Article  PubMed  CAS  Google Scholar 

  • Dupont J, Bonneau JM, Altschuler RA, Aran JM (1994) GABA and glycine changes in the guinea pig brain stem auditory nuclei after total destruction of the inner ear. ARO Abstracts.

    Google Scholar 

  • Dupont J, Young C, Sapan A, Bonneau JM, Altschuler RA (1995) Plasticity of glycine immunoreactivity and cell size changes in the superior olivary complex after unilateral deafferentation. ARO Abstr.

    Google Scholar 

  • Evans, E. F. and Zhao, W (1993) Neuropharmacological and neurophysiological dissection of inhibition in the mammalian dosai cochlear nucleus, In M.A. Merchan, J.M. Juiz, D.A. Godfrey & E. Mugniani (Eds) The Mammalian Cochlear Nuclei: Organization and Function, Plenum Press, New York, pp 253–266.

    Chapter  Google Scholar 

  • Frostholm, A. and Rotter, A. (1985) Glycine receptor distribution in mouse CNS: autoradiographic localization of [3H ] strychnine binding sites. Brain Res. Bull., 15, 475–486.

    Article  Google Scholar 

  • Glendenning, K. K. and Baker, B. N. (1988) Neuroanatomical distribution of receptors for three potential inhibi-tory neurotransmitters in the brainstem auditory nuclei of the cat. J. Comp. Neurol., 275. 288–308.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, D.A., J.A. Parli, J.D. Dunn, and CD. Ross (1988) Neurotransmitter microchemistry of the cochlear nucleus and the superior olivary complex. In J. Syka, and R.L. Masterton (eds): Auditory Pathways. Plenum Press, NY

    Google Scholar 

  • Godfrey DA: Comparison of quantitative and immunohistochemistry for choline acetyltransferase in the rat co-chlear nucleus. In: Merchan MA, Juiz JM, Godfrey DA & Mugnaini E (eds): Mammalian Cochlear Nuclei: Organization and Function, (Plenum Press, New York, 1993) 267–278.

    Chapter  Google Scholar 

  • Helfert RH, Juiz JM, Bledsoe SC, Bonneau J, Wenthold RJ, Altschuler RA (1992) Patterns of glutamate, glycine and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. J Comp Neurol 323:305–325.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10:943–954.

    Article  PubMed  CAS  Google Scholar 

  • Hunter C, Mathura J, Wenthold RJ (1995) Expression of NMDA-selective glutamate receptor NRI subunit iso-forms in the rat cochlear nucleus. Abst Assoc Res Otolaryngol pp 31.

    Google Scholar 

  • Hunter C, Petralia RS., Vu T, Wenthold RJ (1993) Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. J. Neurosci 13:1932–46.

    PubMed  CAS  Google Scholar 

  • Juiz JM, Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1996) Three classes of inhibitory amino acid ter-minals in the cochlear nucleus of the guinea pig. J. Comp Neurol., 373:11–26, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Juiz JM, Rubio ME, Helfert RH, Altschuler TA (1993) Localizing putative excitatory amino acid endings in the cochlear nucleus by quantitative immunocytochemistry. In M.A. Merchan, J.M. Juiz, D.A. Godfrey & E. Mugniani (Eds) The Mammalian Cochlear Nucleus: Organization and Function, Plenum Press, New York, pp 167–178.

    Chapter  Google Scholar 

  • Kolston. J., K.K. Osen, CM. Hackney, O.P. Ottersen, and J. Storm-Mathissen (1992) An atlas of glycine and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat. Embryol. 186: 443–65.

    Article  PubMed  CAS  Google Scholar 

  • Kuhse, J., Schmieden. V. and Betz, H. (1990) Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J. Biol. Chem.. 265. 22317–22320.

    PubMed  CAS  Google Scholar 

  • Kuhse, J., Schmieden, V. and Betz, H. (1990b) A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron, 5, 867–873.

    Article  PubMed  CAS  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K. Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41.

    Article  PubMed  CAS  Google Scholar 

  • Malosio, M.-L., Pouey, B. M., Kuhse, J. and Betz, H. (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J., 10, 2401–2409.

    PubMed  CAS  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M., Sakimura K, Mishina M (1992) Functional characterization of heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt JC & Caspary DM (1995) Age-related reduction of strychnine binding sites in the cochlear nucleus of Fischer 344 rat. Neuroscience 67:713–9.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt JC, Albin RL and Caspary DM (1994) Age-related decrease in GABAB binding in the Fischer 344 rat inferior colliculus. Neurobiol-Aging 15:699–703.

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Altschuler RA, Niparko JK, Hartshorn DO, Helfert RH, Moore JK (1991 ) Deafness-induced changes in the central auditory system and their reversibility and prevention. In: A Dancer, D Henderson, RJ Salvi, RP Hamemik (Eds) Noise induced hearing loss. St. Louis: Mosby Year Book

    Google Scholar 

  • Mishina M, Mori H, Araki K, Kushiya E, Meguro H, Kutsuwada T, Kashiwabuchi N, Ikeda K, Nagasawa M, Yamazaki M, Masaki H, Yamakura T, Morita T, Sakimura K (1993) Molecular and functional diversity of the NMDA receptor channel. In H Higashida, T Yoshioka, K Mikoshiba, (Eds) Molecular basis of ion channels and receptors involved in nerve excitation, synaptic transmission and muscle contraction. The New York Academy of Sciences, New York, pp 136–152

    Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptor: their classes, pharmacology and distinct properties in the function of the central nervous system. Rev Pharmacol Toxicol 29:365–402.

    Article  CAS  Google Scholar 

  • Monyer H, Sprengel R, Schoepter R, Herb A, Higuch M, Lomel H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA-Receptor; Molecular and functional distinction of subtypes. Science 256:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR (1991) Development and plasticity in the ferret auditory system, in RA Altschuler, DW Hoffman, BC Clopton & RW Bobbin, (Eds), Neurobiology of Hearing: The Central Auditory System. Raven Press, NY

    Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  • Oertel, D. and Wickesberg, R. E. (1993) Glycinergic inhibition in the cochlear nuclei: evidence for tuberculoventral neurons being glycinergic, In M.A. Merchan, J.M. Juiz, D.A. Godfrey & E. Mugniani (Eds) The Mammalian Cochlear Nuclei: Organization and Function, Plenum Press, New York, p 225–237.

    Chapter  Google Scholar 

  • Potashner, S. J., Benson, C. G., Ostapoff, E.-M., Lindberg, N. and Morest, D. K. (1993) Glycine and GABA: transmitter candidates of projections descending to the cochlear nucleus, In M.A. Merchan, J.M. Juiz, D.A. Godfrey & E. Mugniani (Eds) The Mammalian Cochlear Nuclei: Organization and Function, Plenum Press, New York, p 195–210.

    Chapter  Google Scholar 

  • Rajan R, Irvine DR Wise LZ Heil P: Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol (1993) 338:17–49.

    Article  PubMed  CAS  Google Scholar 

  • Rajan R, Irvine DRF (1996) Features of and boundary conditions for lesions induced reorganization of adult audi-tory cortical maps. In RJ Salvi, D Henderson, F Fiorini and V Colletti (Eds), Auditory System Plasticity and Regeneration, Thieme Medical Publishers, Inc, NY pp 224–237.

    Google Scholar 

  • Rubel EW, Hyson RL, Durham D. Afferent regulation of neurons in brain stem auditory system. J Neurobiol 1990;21:169–96.

    Article  PubMed  CAS  Google Scholar 

  • Salvi RJ, Wang J, Powers N (1996) Rapid functional reorganization in the inferior colliculus and cochlear nucleus after acute cochlear damage. In RJ Salvi, D Henderson, F Fiorini and V Colletti (Eds), Auditory System Plasticity and Regeneration, Thieme Medical Publishers, Inc, NY pp 275–296.

    Google Scholar 

  • Sanes, D. H., Geary, W. A., Wooten, G. F. and Rubel, E. W. (1987) Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil. J. Neurosci., 7, 3793–3802.

    PubMed  CAS  Google Scholar 

  • Suneja SK, Benson CG, Potashner SJ: Cochlear ablation: long-term effects on uptake and release of D-aspartate, glycine and GABA in brain stem auditory nuclei. Neurosci Abstr. 400:11, 1994.

    Google Scholar 

  • Toile, T. R., Berthele, A., Zieglgänsberger, W.. Seeburg, P. H. and Wisden, W. (1993) The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J. Neuro-sci., 13, 5009–5028.

    Google Scholar 

  • Wenthold, R.J., and C. Hunter (1990) Immunocytochemistry of glycine and GABA receptors in the central auditory system. In O.P. Ottersen, and J. Storm-Mathissen (Eds): Glycine Neurotransmission. Chichester: J. Wiley and Sons, pp. 391–416.

    Google Scholar 

  • Wenthold R. J., Parakkal, M. H.. Oberdorfer, M. D. and Altschuler, R. A. (1988) Glycine receptor immunoreactiv-ity in the ventral cochlear nucleus of the guinea pig. J. Comp. Neurol.. 276, 423–435.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J. (1991 ) Neurotransmitters of brainstem auditory nuclei. In R.A. Altschuler, R.P. Bobbin, B.M. Clopton, and D.W. Hoffman (eds): Neurobiology of Hearing, The Central Auditory System. New York: Raven Press, pp. 121–140.

    Google Scholar 

  • Wenthold RJ, Hunter C and Petralia RS (1993) Excitatory amino acids in the rat cochlear nucleus. In M.A. Merchan, J.M. Juiz, D.A. Godfrey & E. Mugniani (eds) The Mammalian Cochlear Nucleus. Organization and Function, Plenum Press, New York, pp 179–195.

    Chapter  Google Scholar 

  • Wickesberg, R.E., and D. Oertel (1993) Intrinsic connection in the cochlear nuclear complex studied in vitro and in vivo. In M. Merchan, J. Juiz, D. Godfrey, and E. Mugnaini (Eds): The Mammalian Cochlear Nuclei: Organization and Function. New York: Plenum Press, pp.77–90.

    Google Scholar 

  • Wu, S.H., and D. Oertel (1986) Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J. Neurosci. 6:2691–706.

    PubMed  CAS  Google Scholar 

  • Zarbin, J. M., Wamsley, J. K. and Kuhar, M. J. (1981) Glycine receptor: light microscopic autoradiographic local-ization with [3H ] strychnine. J. Neurosci., 1, 532–547.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Altschuler Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Altschuler, R.A., Sato, K., Dupont, J., Bonneau, J.M., Nakagawa, H. (1997). Diversity in Glycine and NMDA Receptor Subunit Composition in the Rat Cochlear Nucleus and Superior Olivary Complex and Changes with Deafness. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics